ESpinS

A program for classical Monte-Carlo simulations of spin systems

Mojtaba Alaei

Quantum Simulations of Materials (QSM) Research Group, Department of Physics Isfahan University of Technology

November 20, 2022

Table of contents

Introduction

- 2 Monte Carlo and Parallel tempering
- 3 Installation
- Oreate the main input file

Output files

Examples

8

development

Acknowledgment

Introduction

EspinS?

- The main parts of the code are written in Fortran.
- Dr. Nafise Rezaei mainly developed the code for three years.
- The code is still under development.
- GitHub: https://github.com/nafiserb/ESpinS
- Paper: Computational Materials Science, 202, 110947 (2022)

Introduction

Spin Hamiltonian

$$\mathcal{H} = \mathcal{H}_{\rm Heis} + \mathcal{H}_{\rm bi-qu} + \mathcal{H}_{\rm DM} + \mathcal{H}_{\rm single-ion}$$

$$\mathcal{H}_{\text{Heis}} = -\frac{1}{2} \sum_{i,j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j,$$

$$\mathcal{H}_{\mathrm{bi-qu}} = \frac{1}{2} \sum_{ij} B_{ij} (\mathbf{S}_i \cdot \mathbf{S}_j)^2,$$

$$egin{array}{rcl} \mathcal{H}_{\mathrm{DM}} &=& \displaystylerac{D}{2}\sum_{ij}\hat{\mathbf{D}}_{ij}\!\cdot(\mathbf{S}_i imes\mathbf{S}_j), \ \mathcal{H}_{\mathrm{single-ion}} &=& \displaystyle\Delta\sum_i(\mathbf{S}_i\cdot\hat{\mathbf{d}}_i)^2 \end{array}$$

Monte Carlo: Local update metropolis algorithm

$$H = -\sum_{\langle i,j\rangle} J_{i,j}\sigma_i\sigma_j$$

$$\sigma_i = \pm 1$$

Isfahan University of Technology 🕸 QSM Group

Isfahan University of Technology 🕸 QSM Group

Isfahan University of Technology 🛠 QSM Group

Isfahan University of Technology 🖶 QSM Group

T=4.00J

Isfahan University of Technology 🕸 QSM Group

Isfahan University of Technology 🕏 QSM Group

Isfahan University of Technology 🕏 QSM Group

Isfahan University of Technology 🕏 QSM Group

Isfahan University of Technology 🖶 QSM Group

Isfahan University of Technology 🕸 QSM Group

Isfahan University of Technology 🕏 QSM Group

Isfahan University of Technology 🕏 QSM Group

Isfahan University of Technology 🕸 QSM Group

Parallel tempering (replica exchange)

Consider the following non-periodic spin system:

Generating 50 spin configurations by random changing of the spin directions:

Parallel tempering (replica exchange)

Traversing in phase space can be done more quickly at higher temperatures using local updating:

Therefore we can use higher temperatures MC samplings for the lower temperatures.

Parallel tempering (replica exchange)

The swapping probability between two replicas is:

$$\mathcal{T}(\{\boldsymbol{X}\} \rightarrow \{\boldsymbol{X}'\}) = min\left[e^{\Delta\beta\Delta E}, 1\right]$$

where:

$$\{ \boldsymbol{X} \} = \{ (X_1, \beta_1), \cdots, (X_i, \beta_i), (X_{i+1}, \beta_{i+1}), \cdots, (X_K, \beta_K) \} \\ \{ \boldsymbol{X}' \} = \{ (X_1, \beta_1), \cdots, (X_{i+1}, \beta_i), (X_i, \beta_{i+1}), \cdots, (X_K, \beta_K) \}$$

Download

git clone https://github.com/nafiserb/ESpinS.git

ESpinS directory tree:

```
ESpinS
__config
 _examples
   __example01
    _example02
   __example03
   __example04
   __example05
  src
 _user-guide
   ___ images
 _utility
   __mc-hist
    __optimize-temperatures
   ___visualize-spin
```

Edit make.sys

For parallel compilation using Intel Fortran Compiler (ifort):

To compile, type:

make

After compilation, an executable file, named mc.x is created:

#ls
#config examples License.txt Makefile make.sys mc.x README.md src user-guide utility

Edit make.sys

For serial compilation, comment COMMS with #:

The strategy to make main input file

EspinS has three input files: primary (name.inpl.mcin), secondary (name.inpl.mcin) and main (name.mcin) input files

Step 1, create name.inp1.mcin

Create a templete for name.inpl.mcin:

cd ESpinS/utility
bash inpfile.tem

The file's name (i.e., name) is arbitrary, but the suffix should be inpl.mcin
 The exclamation mark (!) and Hash (#) used for comments

Step 1, create name.inp1.mcin

Create a templete for name.inp1.mcin:

```
# cd ESpinS/utility
# bash inpfile.tem
```

```
Begin Unit_Cell_Cart
!Bohr
A_1x A_1y A_1z
A_2x A_2y A_2z
A 3x A 3y A 3z
End Unit Cell Cart
Begin Atoms Frac
atom symbol atom pos x atom pos y atom pos z magnetic moment
End Atoms Frac
Shells jij = 1
!! Spin_glass = .True.
!! Ham_bij = .True.
!! Shells_bij = 1
!! Ham dij = .Ture.
!! Shells_dij = 1
!! Length unit
            = Bohr
!! Parameter_unit = Ryd
!! Coordinate
                = Cart
```

- The file's name (i.e., name) is arbitrary, but the suffix should be inpl.mcin
- The exclamation mark (!) and Hash (#) used for comments

Step 1, create name.inp1.mcin

Lattice vectors:

Begin	Unit_Cell_Cart	
!Bohr		
A_1x	A_1y	A_1z
A_2x	A_2y	A_2z
A_3x	A_3y	A_3z
End Un	it_Cell_Cart	

Lattice sites and magnetic moments (S_i) :

```
Begin Atoms_Frac
atom_symbol atom_pos_x atom_pos_y atom_pos_z magnetic_moment
End Atoms_Frac
```

Shell numbers:

Shells_jij = 1

step 1, create name.inpl.mcin

For example for a cubic lattice (e.g. cubic.inpl.mcin):

```
Begin unit_cell_cart
Bohr
10.000 0.000 0.000
0.000 10.000 0.000
End unit_cell_cart
Begin atoms_frac
Mn 0.00 0.00 0.00 1.00
End atoms_frac
Shells_jij=1
```

step 2, create name.inp2.mcin

Typing following command creates secondary input file (name.inp2.mcin):

mc.x -inp1 cubic

The output files:

cubic.inp2.mcin cubic.mcout cubic.neigh cubic.xsf

step 2, create name.inp2.mcin

cubic.inp2.mcin:

```
Begin Unit Cell Cart
   5.29177211 0.00000000
                           0.00000000
   0.0000000 5.29177211
                           0.00000000
   0.00000000 0.00000000 5.29177211
End Unit_Cell_Cart
Begin Atoms Frac
         0.0000000
                               0.0000000
Mn
                    0.0000000
End Atoms Frac
!! Order parameter = .True.
!! Sfactor = .True.
!! Staggered_m = .True.
!! Binning error = .True.
!! Spin_correlation = .True.
!! Energy write = .True.
## Hamiltonian
!! Boundary
                = Open
!! Ham_singleion = .True.
!! Ham_field = .True.
!! Spin glass
                  = .True. !Add the sigma parameters as sig=.. in Parameters_Jij Block
Begin Parameters Jij
t1= 1:t2= 1:sh= 1:Jij= ?????!:sig=????!:d= 5.29177211
End Parameters_Jij
```
```
step 2, create name.inp2.mcin
```

Setting parameters such as exchange:

```
Begin Parameters_Jij
tl= 1:t2= 1:sh= 1:Jij= ?????!:sig=????!:d= 5.29177211
End Parameters_Jij
```

 $J_1 = 0.00300 \text{ eV}$:

```
Begin Parameters_Jij
tl= 1:tl= 1:sh= 1:Jij= 0.00300!:sig=?????!:d= 5.29177211
End Parameters_Jij
```

mc.x -inp2 cubic

Output files:

cubic.inp2.mcin	cubic.mcin	cubic.mcout	cubic.neigh	cubic.xsf
-----------------	------------	-------------	-------------	-----------

cubic.mcin:

0.00000000 5.29177211 0.00	000000 000000 1177211			
Begin Atoms_Frac Mn 0.0000000 0.0000000 End Atoms_Frac	0.000000 1.00			
tem_start - 5 tem_end - 5 tems_num - 1 !! tems_mode - man !! tems - 5.00 10.00	15.00 20.00			
<pre>!! PtTrue. !! Pt_steps_swap - 10</pre>				
steps_warmup - 100000 steps_mc - 200000 steps_measure - 2				
initial_sconfig - ferro mcarlo_mode - random supercell_size - 4 4	4			
<pre>## Hamiltonian Begin Jij_parameters</pre>				
f1- 0.000000, 0.000000,	0.000000:f2- 1.000000, 0.000000:f2- 0.000000, 0.000000:f2- 0.000000,	1.000000, 0.000000:jij-	0.00300000!:sh= 1! 0.00300000!:sh= 1! 0.00300000!:sh= 1!	:t1- 1:t2- 1
f1- 0.000000, 0.000000, f1- 0.000000, 0.000000,	0.000000:f2- 0.000000, 0.000000:f2- 0.000000,	0.000000, -1.000000:jij- -1.000000, 0.000000:jij-	0.00300000!:sh= 1! 0.00300000!:sh= 1!	:t1= 1:t2= 1 :t1= 1:t2= 1
f1= 0.000000, 0.000000, End Jij_parameters	0.000000:f21.000000,	0.000000, 0.000000:jij-	0.00300000!:sh= 1!	:t1- 1:t2- 1

Monte Carlo parameters:

tem_start tem_end	=	5 5
tems_num	=	1
!! tems_mode		= man
!! tems		= 5.00 10.00 15.00 20.00
!! Pt		= .True.
<pre>!! Pt_steps_swap</pre>		= 10
steps_warmup	=	100000
steps_mc	=	200000
steps_measure	=	2
initial_sconfig	=	ferro
mcarlo_mode	=	random
supercell_size	=	4 4 4

Monte Carlo parameters, temperature setting:

tem_start	=	25
tem_end	=	75
tems_num	=	20
!! tems_mode		= man
!! tems		= 5.00 10.00 15.00 20.00
!! tems		= 5.00 10.00 15.00 20.00

 $N = 20, T_{0} = 25K, T_{N} = 75K, \Delta T = (T_{N} - T_{0})/(N - 1)$ List of temperatures:

25.0000	
27.6316	
30.2632	
32.8947	
35.5263	
38.1579	
40.7895	
43.4211	
46.0526	
48.6842	
51.3158	
53.9474	
56.5789	
59.2105	
61.8421	
64.4737	
67.1053	
69.7368	
72.3684	
75.0000	

Setting the temperature manually:

!tem_start	= 25
!tem_end	= 75
tems_num	= 4
tems_mode	= man
tems	= 5.00 10.00 15.00 20.00

Parallel tempering setting:

Pt = .True. Pt_steps_swap = 10

If Pt= .True.,

swapping the replicas occur after every pt_steps_swap Monte-Carlo steps.

Monte Carlo parameters:

steps_warmup	=	100000
steps_mc	=	200000
steps_measure	=	2

- steps_warmup: number of steps for warm-up
- steps_mc: number of steps for sampling
- steps_measure: number of steps between successive sampling
- Total number of MC steps is

```
steps_measure × (steps_warmup + steps_mc )
```

Monte Carlo parameters:

initial_sconfig	=	ferro
mcarlo_mode	=	random

- initial_sconfig:
 - ferro
 - rand
 - file: Spin configuration is read from name_sconfig.dat file.
- mcarlo_mode:
 - rand or random (default)
 - const or constraint:

The new direction of spin is chosen randomly inside a cone. The cone axis is the previous direction of the spin and the apex angle of cone $(2\Delta\Theta)$ can be specified by tilt_angles_max keyword.

4

|--|

|--|

supercell_size = 4 4 4
: = 4 4 4

4

|--|

|--|

|--|

|--|

Begin	Jij_paramet	ers						
f1=	0.000000,	0.000000,	0.000000:f2=	1.000000,	0.000000,	0.000000:jij=	0.00300000	
f1=	0.000000,	0.000000,	0.000000:f2=	0.000000,	1.000000,	0.000000:jij=	0.00300000	
f1=	0.000000,	0.000000,	0.000000:f2=	0.000000,	0.000000,	1.000000:jij=	0.00300000	
f1=	0.000000,	0.000000,	0.000000:f2=	0.000000,	0.000000,	-1.000000:jij=	0.00300000	
f1=	0.000000,	0.000000,	0.000000:f2=	0.000000,	-1.000000,	0.000000:jij=	0.00300000	
f1=	0.000000,	0.000000,	0.000000:f2=	-1.000000,	0.000000,	0.000000:jij=	0.00300000	
End Ji	ij_parameter:	S						

Run MC simulation

Parallel:

mpiexec -np 4	mc.x cubic		
Serial:			
mc.x cubic			
Output:			
cubic_mc.dat	cubic.mcout	cubic_pm.dat	cubic_sconfig.dat

name_mc.dat

	on 1Dec2019 at 1					
#						#
Temp	Magnetization	Energy_ave	C_M	Sus	U_E	U_M #
#						#
25.0000	0.83550519E+00	-0.77911542E+02	0.11757710E+01	0.16684575E-02	0.66418132E+00	0.66544024E+00
27.6316	0.81393559E+00	-0.74764204E+02	0.12126343E+01	0.20123090E-02	0.66327460E+00	0.66495005E+00
30.2632	0.79058810E+00	-0.71440867E+02	0.12718923E+01	0.24192441E-02	0.66201498E+00	0.66428286E+00
32.8947	0.76625592E+00	-0.68084127E+02	0.13335515E+01	0.29341298E-02	0.66034539E+00	0.66334182E+00
35.5263	0.73942613E+00	-0.64521905E+02	0.14043495E+01	0.35938322E-02	0.65808589E+00	0.66198791E+00
38.1579	0.70985858E+00	-0.60734904E+02	0.14676085E+01	0.44110459E-02	0.65508426E+00	0.66007139E+00
40.7895	0.67678794E+00	-0.56742752E+02	0.15649544E+01	0.55834312E-02	0.65065686E+00	0.65703480E+00
43.4211	0.64038864E+00	-0.52588368E+02	0.16389253E+01	0.71311003E-02	0.64484445E+00	0.65248126E+00
46.0526	0.59837624E+00	-0.48191253E+02	0.17123289E+01	0.93554612E-02	0.63638172E+00	0.64489868E+00
48.6842	0.55166880E+00	-0.43668941E+02	0.17216844E+01	0.11913054E-01	0.62544914E+00	0.63360306E+00
51.3158	0.50029902E+00	-0.39133828E+02	0.16418236E+01	0.14407892E-01	0.61204399E+00	0.61705462E+00
53.9474	0.45335246E+00	-0.35189936E+02	0.14704517E+01	0.15697680E-01	0.59901097E+00	0.59832671E+00
56.5789	0.40700519E+00	-0.31561116E+02	0.12375110E+01	0.15757752E-01	0.58724204E+00	0.57704497E+00
59.2105	0.36899114E+00	-0.28622562E+02	0.10168323E+01	0.14786537E-01	0.57809401E+00	0.55805479E+00
61.8421	0.33690216E+00	-0.26188301E+02	0.84029002E+00	0.13521563E-01	0.57020988E+00	0.53990337E+00
64.4737	0.31021013E+00	-0.24172414E+02	0.68930003E+00	0.12182116E-01	0.56560115E+00	0.52439617E+00
67.1053	0.28936051E+00	-0.22544486E+02	0.57927296E+00	0.10850404E-01	0.56078673E+00	0.51278915E+00
69.7368	0.27114428E+00	-0.21107750E+02	0.49294400E+00	0.96330006E-02	0.55593184E+00	0.50228022E+00
72.3684	0.25623871E+00	-0.19886224E+02	0.42248414E+00	0.86722238E-02	0.55209468E+00	0.49345021E+00
75.0000	0.24452098E+00	-0.18862684E+02	0.36897650E+00	0.77449026E-02	0.54846263E+00	0.48934378E+00

name_sconfig.dat

Created on 22		12:46:34
4 4	4	
64 20		
25.000000		
-0.525217	-0.234175	0.818113
-0.328709	0.076391	0.941337
-0.026791	-0.102281	0.994395
0.104865	-0.160278	0.981486
0.161734	0.300896	0.939843
-0.030702	-0.156163	0.987254
-0.055924	0.068898	0.996055
-0.848830	0.294029	0.439356
0.312755	-0.272783	0.909821
-0.326866	-0.040888	0.944186
0.143095	0.605099	0.783185
0.030236	-0.277578	0.960227
-0.236380	-0.508757	0.827823
-0.134752	-0.813143	0.566251
-0.077080	0.029248	0.996596
0.304981	0.279298	0.910483
0.222067	-0.370653	0.901833
0.403009	-0.335567	0.851457
0.782504	0.562700	0.266563
0.449205	0.349361	0.822291
0.801018	0.472643	0.367395
0.629960	-0.416410	0.655556
0.261368	-0.327883	0.907843

Cubic with ferromagnetic first nearest neighbor interaction

The result is compatibale with $J_1/k_B T_C = 0.6929$ (PRB 43, 6087 (1991))

Antiferromagnetic simple cubic with $J_1 = 0.26J_2$

This configuration is preferred by $J_1 < 0$

This configuration is preferred by $J_2 < 0$

The frustration causes reaching into the equilibrium difficult.

Antiferromagnetic simple cubic with $J_1 = 0.26J_2$

N. Rezaei, M. Alaei, H. Akbarzadeh, Computational Materials Science, 202, 110947 (2022)

Isfahan University of Technology 🕸 QSM Group

November 20, 2022 38 / 49

Pyrochlore FeF₃: A geometrical frustrated system

Isfahan University of Technology 🕸 QSM Group

Pyrochlore FeF₃: A geometrical frustrated system

Isfahan University of Technology 🕸 QSM Group

Pyrochlore FeF₃: A geometrical frustrated system

Isfahan University of Technology 🕸 QSM Group

Pyrochlore FeF₃: A geometrical frustrated system

Isfahan University of Technology 🕸 QSM Group

Pyrochlore FeF₃: A geometrical frustrated system

Isfahan University of Technology 🕸 QSM Group

Pyrochlore FeF₃: A geometrical frustrated system

Isfahan University of Technology 🕸 QSM Group

Geometrical frustration?

J. S. Gardner, M. J. P. Gingras, and J. E. Greedan Rev. Mod. Phys. 82, 53 (2010)

There is no long-range order with $J_1 < 0$

PHYSICAL REVIEW B

VOLUME 45, NUMBER 13

1 APRIL 1992-I

Absence of long-range order in a three-dimensional geometrically frustrated antiferromagnet

J. N. Reimers*

Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada L8S 4M1 (Received 15 May 1991; revised manuscript received 26 August 1991)

Classical Heisenberg spins on a lattice of *corner*-sharing tetrahedra with nearest-neighbor antiferromagnetic interactions are investigated with Monte Carlo (MC) techniques. The system is highly frustrated with an infinitely degenerate ground state. Mean-field theory predicts no long-range order (LRO) at any temperature. The MC calculations are consistent with this result, thus providing evidence that thermal fluctuations beyond the mean-field approximation do not stabilize LRO. The possibility of incommensurate and spin nematic order is considered. The temperature dependence of some spin-glass order parameters, such as the Edwards-Anderson order parameter and the single-spin autocorrelatorfunction, are also investigated. The results show that no spin freezing occurs at nonzero temperatures.

But FeF₃ indicates an antiferromagnetic transition around 22K!

Examples

Pyrochlore FeF₃: A geometrical frustrated system

MC result: order parameter

"The AIAO order parameter is $m = \sum_{i} \mathbf{S}_{i} \cdot \mathbf{d}_{i} / N$, where \mathbf{d}_{i} indicates a local unit vector at the *i*th site, which points to the center of the related tetrahedron of site *i*."

Examples

Pyrochlore FeF₃: A geometrical frustrated system

T=24.3 K T=26.3 K T=27.7 K T=33.0 K 400 0 3.5 3 4.5 (100) (100) 1.75 (100) 200 (100 0 0 -1 -1 0 0 (hh0) (hh0) (hh0) (hh0)

MC result: neutron structure factor

The peaks in the graph (T=24.3 K) are related to the all-in/all-out order.

N. Rezaei, M. Alaei, H. Akbarzadeh, Computational Materials Science, 202, 110947 (2022)

Implementing a more general Hamiltonian

$$H = \sum_{i,j>i} \mathbf{S}_i^T \mathbb{J}_{ij} \mathbf{S}_j + \sum_i \mathbf{S}_i^T \mathbb{A}_i \mathbf{S}_i$$

• \mathbb{J}_{ij} : J matrix

• A_i : single-ion anisotropy matrix

$$\mathbb{J}_{ij} = J_{ij}\mathbb{I} + \mathbb{D}_{ij} + \mathbb{K}_{ij}$$

•
$$J_{ij} = (\mathbb{J}_{ij,xx} + \mathbb{J}_{ij,yy} + \mathbb{J}_{ij,zz})/3$$

• $\mathbb{D}_{ij} = (\mathbb{J}_{ij} - \mathbb{J}_{ij}^T)/2$

• $\mathbb{K}_{ij} = (\mathbb{J}_{ij} + \mathbb{J}_{ij}^T)/2 - J_{ij}\mathbb{I}$

maintenance and financial support

Thanks to

- Dr. Akbarzadeh,
- Dr. Shahbazi,
- Dr. Hashemifar

Thank you for your attention