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Top-down design:

synthesis recipe

additional constraints 
(high stability, low toxicity,...)

not clear how to achieve this!

target property

Bottom-up design:

material 1 material 2 ...  material N
pr

op
er

ty

high-throughput screening

target property (high activity 
and selectivity of a catalyst)

High-throughput computational materials design



The key issue: Complexity

݅
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1) Many-body problem (( + (dimensional-(ࡺ

2) Multiscale problem (tens orders of magnitude in time and space)

However, there is hope that the complexity can be treated incrementally



Including science in descriptors

molecule transfer 
and rotation

structure descriptor: Cartesian coordinates  changes, but properties do not change!

descriptive parameters
(composition, synthesis 
conditions, operation 
conditions)

artificial intelligence 
(neural networks, 
regression, data 
mining,...)

machine will learn symmetries, not (other) physics -- much more data 
will be needed for an accurate model



Descriptors

J. K. Nørskov, T. Bligaard, J. Rossmeisl and C. H. Christensen, Nature Chemistry 1, 37 (2009)

Simple(r) properties (bulk d-band center position and CO dissociation energy) are correlated 
to more complex properties (adsorption energy and reaction barrier)

The simpler quantities are called descriptive parameters (a descriptor)



Descriptors

J. K. Nørskov, T. Bligaard, J. Rossmeisl and C. H. Christensen, Nature Chemistry 1, 37 (2009)

A simple physical model (Newns-Anderson) motivates the d-band center descriptor

What if we don’t know such a model, or we need a more accurate and more widely applicable 
model?



Descriptors

J. K. Nørskov, T. Bligaard, J. Rossmeisl and C. H. Christensen, Nature Chemistry 1, 37 (2009)

A simple physical model (Newns-Anderson) motivates the d-band center descriptor

Find descriptor from DATA!



Supervised data analysis
Training set

Calculate and/or measure 
properties and functions

ܲ, for many materials ݅

Descriptor
Find appropriate descriptor ࢊ

Learning
Find the function ܲ(ࢊ)

Fast prediction
Calculate ܲ for new values of 

ࢊ (new materials)



Descriptors
1) A descriptor ࢊ uniquely characterizes the material  as well as property-relevant 

elementary processes

2) The determination of the descriptor must not involve calculations as intensive as those 
needed for the evaluation of the property to be predicted



kernel ridge regression                                                        linear

+ +
minimize

Target property model: Kernel ridge regression versus 
feature selection 

Regression models: Basis set expansion in materials space

ࢉ 



Regression: Importance of regularization
training validation

min


∑ ܲ ݀ , ܿ − ܲ
ଶ

 + min ,(ܿ)݂ߣ
ఒ

(validation error) → ߣ



kernel ridge regression                                                        linear

+ +
minimize

Target property model: Kernel ridge regression versus 
feature selection 

Regression models: Basis set expansion in materials space

ࢉ 



Target property model: Kernel ridge regression versus 
feature selection 

kernel (Gaussian, Laplacian, linear (ࢊ ȉ ((ࢊ

kernel ridge regression                                                        linear

+ +
minimize

ࢉ 

penalty on similar data points

penalty on the number of 
non-zero coefficients ࢉ 



(Gaussian) kernel ridge regression example



Descriptors
1) A descriptor ࢊ uniquely characterizes the material  as well as property-relevant 

elementary processes

2) The determination of the descriptor must not involve calculations as intensive as those 
needed for the evaluation of the property to be predicted

3) The dimension ષ of the descriptor should be as low as possible (for a certain accuracy 
request)

L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and M. Scheffler, Phys. Rev. Lett. 114, 105503 (2015)

Choose a physically motivated basis set!



Descriptors

Idea: calculate many physically motivated quantities (features), and use these features as a 
basis for the physical model under compactness constraints

1) A descriptor ࢊ uniquely characterizes the material  as well as property-relevant 
elementary processes

2) The determination of the descriptor must not involve calculations as intensive as those 
needed for the evaluation of the property to be predicted

3) The dimension ષ of the descriptor should be as low as possible (for a certain accuracy 
request)

L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and M. Scheffler, Phys. Rev. Lett. 114, 105503 (2015)



ZB

RS

Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite (ZB/W) or Rocksalt (RS)?”

82 binary octet compounds



Energy differences 
between different 
structures are very 
small. 
For Si: 0.01% of the 
energy of a Si atom, 
or 0.1% of the 4 
valence electrons.

RS                                    ZB

Crystal-structure prediction was and is one of the 
most important, basic challenges of materials 
science and engineering.

Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite (ZB/W) or Rocksalt (RS)?”



J. A. van Vechten, Phys.
Rev. 182, 891 (1969). J. C. Phillips, Rev. 
Mod. Phys. 42, 317 (1970). 
J. John and A.N. Bloch, Phys. Rev. Let. 33, 
1095 (1974) J. R. Chelikowsky and J. C. 
Phillips, Phys. Rev. B 33, 2453 (1978)
A. Zunger, Phys. Rev. B 22, 5839 (1980).
D. G. Petifor, Solid State Commun. 51, 31
(1984). Y. Saad, D. Gao, T. Ngo, S. 
Bobbit, J. R. Chelikowsky, and W.
Andreoni, Phys. Rev. B 85, 104104 (2012).

RS                                    ZB

Crystal-structure prediction was and is one of the 
most important, basic challenges of materials 
science and engineering.

Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite (ZB/W) or Rocksalt (RS)?”



RS                   ZB

Can we predict not yet calculated structures from ZA and ZB? Can we create a 
map: “The ZB/W community lives here and the RS community there?” 

Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite (ZB/W) or Rocksalt (RS)?”



Can we predict not yet calculated structures from ZA and ZB? Can we create a 
map: “The ZB/W community lives here and the RS community there?” No complexity reduction  need a better basis

Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite (ZB/W) or Rocksalt (RS)?”



Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite (ZB/W) or Rocksalt (RS)?”

J. A. van Vechten, Phys.
Rev. 182, 891 (1969). J. C. Phillips, Rev. 
Mod. Phys. 42, 317 (1970). 
J. John and A.N. Bloch, Phys. Rev. Let. 33, 
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Andreoni, Phys. Rev. B 85, 104104 (2012).

Can we predict not yet calculated structures from ZA and ZB? Can we create a 
map: “The ZB/W community lives here and the RS community there?” 

descriptor can be determined 
spectroscopically - properties of the solid



Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite (ZB/W) or Rocksalt (RS)?”

Can we predict not yet calculated structures from ZA and ZB? Can we create a 
map: “The ZB/W community lives here and the RS community there?” 

descriptor can be determined 
spectroscopically - properties of the solid

Can we create a map based on 
calculations simpler than bulk?



Primary features and feature space
free atoms

free dimers

How to find the best model for our target property (energy difference between different 
crystal structures)? 



Symbolic regression: Eureqa

https://community.datarobot.com/t5/resources/introduction-to-eureqa/ta-p/2409

Uses evolutionary algorithm to find the best formula describing target property

Assumes “gene” structure of the formula  bias 

May result in an unnecessarily complex model



Primary features and feature space
free atoms

free dimers

We start with 23 primary features and build > 10,000 non-linear combinations



Mathematical formulation of the problem

ࡼ -- property value (ࢆࡱ −  for material (ࡿࡾࡱ (a function in materials space)

,ࢊ -- value of feature  related to material  (e.g., ࢙࢘  − ()࢘ ) (a basis function in 
materials space)

ࢉ -- coefficient of the expansion of the property function in terms of basis functions:

ܲ =  ݀,ܿ


regularization term to explore and ensure compactness of the expansion (reduce complexity)

How to find ࢉ?

 ܲ −  ݀,ܿ


ଶ



+ ߣ ࢉ  → argmin(ࢉ)



Mathematical formulation of the problem
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ࢉ  -- number of non-zero coefficients  NP hard! (need to try all combinations)
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Mathematical formulation of the problem

ࡼ -- property value (ࢆࡱ −  for material (ࡿࡾࡱ (a function in materials space)

,ࢊ -- value of feature  related to material  (e.g., ࢙࢘  − ()࢘ ) (a basis function in 
materials space)

ࢉ -- coefficient of the expansion of the property function in terms of basis functions:

ܲ =  ݀,ܿ


How to find ࢉ?

ࢉ  = ∑ ࢉ


 -- ridge regression  not most compact! 
ࢉ  -- number of non-zero coefficients  NP hard! (need to try all combinations)

ࢉ  = ∑ ࢉ -- LASSO (Least Absolute Shrinkage and Selection Operator)  convex problem, 
equivalent to the NP-hard if features (columns of ࢊ) are uncorrelated

 ܲ −  ݀,ܿ


ଶ



+ ߣ ࢉ  → argmin(ࢉ)



Compressed (compressive?) sensing

Expand in a basis (wavelets)  use LASSO to select most important basis functions  store 
compressed image 



Mathematical formulation of the problem

ࡼ -- property value (ࢆࡱ −  for material (ࡿࡾࡱ (a function in materials space)

,ࢊ -- value of feature  related to material  (e.g., ࢙࢘  − ()࢘ ) (a basis function in 
materials space)

ࢉ -- coefficient of the expansion of the property function in terms of basis functions:

ܲ =  ݀,ܿ


How to find ࢉ?

ࢉ  = ∑ ࢉ -- LASSO (Least Absolute Shrinkage and 
Selection Operator)  convex problem, equivalent to the 
NP-hard if features (columns of D) are uncorrelated (no 
linear dependence in the basis set)

                ܲ −  ݀,ܿ


ଶ



+ ߣ ࢉ  → argmin(ࢉ)



The descriptors selected with LASSO

Same features are selected for higher-dimensional descriptors, but this does not 
have to be the case  



“The Map” -- compressed sensing -- LASSO, 2D descriptor 

The complexity and science is 
in the descriptor (identified 
from >10,000 features).

L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, 
C. Draxl, and M. Scheffler, 
Phys. Rev. Lett. 114, 105503 (2015).

RS

ZB

ܲ ݆ = ࢊ ݆ ࢉ



Predictive power of the model
Hadn't we known about diamond … we'd have predicted it!

Hadn't we known about any carbon-containing binary … we'd have predicted carbon 
chemistry (from atomic features)



Predictive power of the model

Descriptor   ZA, ZB ZA*, ZB*   1D       2D      3D     5D

MAE                1*10-4           3*10-3 0.12  0.08  0.07 0.05
MaxAE 8*10-4 0.03      0.32   0.32   0.24   0.20

MAE, CV           0.13       0.14     0.12    0.09   0.07   0.05
MaxAE, CV       0.43      0.42     0.27    0.18    0.16   0.12

Mean absolute error (MAE), and maximum absolute error (MaxAE), in eV, (first two 
lines) and for a leave-10%-out cross validation (CV), averaged over 150 random 
selections of the training set (last two lines). For (ZA*, ZB*), each atom is identified by 
a string of three random numbers.

Gaussian-kernel ridge regression LASSO
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Predictive power of the model

Gaussian-kernel ridge regression LASSO



Predictive power of the model

Gaussian-kernel ridge regression LASSO



Drawing causal inference from data

Nuclear numbers ZA, ZB ↔ our descriptor

many-body Hamiltonian → energy differences
a mapping exists, even a physical intuition exists, but ΔE
does not listen directly to the descriptor (intricate causality)

ܲ ݆ = ࢊ ݆ ࢉ
There are two aspects:

1) practical aspect -- we benefit from knowing ࢊ → ࡼ mapping for any convenient ()ࢊ
(analogy: plane waves)

2) physical aspect (understanding) -- we can reduce the complexity of the model and at the 
same time increase its applicability domain by a clever choice of ()ࢊ (analogy: atomic 
orbitals and molecular-orbital picture) 

We greatly benefit from ݀(݆) providing a framework for a rational analysis



CH4 chemical decomposition 
under shock-compression conditions (high T and p)

Methane at T = 3,300 K, 
p = 40.53 GPa: MD simula-
tions (using a force-field 
description) find 2,613 
different chemical reactions. 
Using compressed sensing it 
is shown that only 11% of 
them are relevant.

Yang, Q., Sing-Long, C. A., Reed, E. J., MRS Advances 1 (2016)

The A matrix has 2,613 columns, 
2,395,918,510 rows
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Lattice Anharmonicity and Thermal Conductivity from 
Compressive Sensing of First-Principles Calculations

ࡲ = −Φ − Φ࢛ −
1
2

Φ࢛࢛ − ⋯

force on atom ࢇ
(training data)

displacement of atom ࢉ
(training data)force constant tensor

ࣔ࢈࢛ࣔࢇ࢛ࣔ/ࡱ
(unknown)

min


ߣ  Φூ
ூ

+  ܨ − Φܣ
ଶ



→ Φ
ܣ =

−1 ݑ
ଵ −

1
2

ݑ
ଵݑ

ଵ ⋯
⋮ ⋮ ⋮

−1 ݑ
 −

1
2

ݑ
ݑ

 ⋯

 predictive model for anharmonic lattice dynamics

F. Zhou, W. Nielson, Y. Xia, and Vidvuds Ozoliņš, Phys. Rev. Lett. 113, 185501 (2014)



Compressive Sensing for Cluster Expansion
ܧ ߪ = ܧ +  Π ߪ ܬ



min


ߣ  ܬ


+  (ߪ)ி்ܧ − (ߪ)ாܧ ଶ



→ ܬ

L. J. Nelson, G. L. W. Hart, F. Zhou, and V. Ozoliņš, Phys. Rev. B 87, 035125 (2013)



Enabling Feature Spaces with Billions of Elements by Sure 
Independence Screening

ࢉ  = ∑ ࢉ -- LASSO  convex problem, equivalent to the NP-hard if features 
are uncorrelated  not the case when many features are generated  Sure 
Independence Screening plus Selection Operator (SISSO)

1. Systematically construct a huge feature space (1011) from primary features: ܴ =
{+, , ∙, 1, 2, 3, , exp, log, ||}(use physically meaningful combinations!)

2. Select top ranked features using Sure Independence  Screening (SIS)[1] (correlation 
learning). Select n features  corresponding to the n largest projection on the target 
property, i.e. largest components of the vector ( ்࢟ࡰ )

3. Apply a sparsifying operator (l0 regularization) to the selected features to 
determine 1D, 2D,... descriptors

R. Ouyang, et al., Physical Review Materials 2, 083802 (2018)

y : vector with the target property (e.g., rock salt-
zincblende energy differences; 82 elements)

ࡰ : matrix of the feature space (e.g., 82 x 100 billion elements)



SISSO: Iterative residual fitting

response vector :࢟

P: target material property

Residual: ܴ = ܲ − ∑ ܿ݀

R. Ouyang, et al., Physical Review Materials 2, 083802 (2018)

features
d1

P

Residual1

features
d2



SISSO: Performance
LASSO(+) SISSO



SISSO: Performance



SISSO: Multitask and categorical
Multitask: Construct simultaneously SISSO models for several properties with the same 
descriptor

min
ࢉ

ߣ ܿ


 + 
1

ୱܰୟ୫୮୪ୣୱ
  ܲ − ࢉࢊ ଶ

ୱୟ୫୮୪ୣୱ
୧୬ 



→ ࢉ

Categorical (can be also multitask): Property - material belongs to a given class (yes/no) 

min
ࢉ

ߣ ܿ


 +   ܱூ(ࢊ, (ࢉ
ஷூ

ேౙౢ౩౩౩

ூୀଵ

→ ࢉ

number of data in the overlap region between domains of different classes in ࢊ-space

R. Ouyang, et al., J. Phys.: Mater. 2, 024002 (2019)



SISSO: Examples
• Perovskite phase stability (improved tolerance factor)

Goldschmidt factor: accuracy 79%
. ૡ < ࢄ࢘ା࢘

(࢘ାࢄ࢘)
< . ૢ

ionic radii

New factor: accuracy 92%
ࢄ࢘
࢘

−   − ࢘ ⁄࢘
࢘ ܖܔ ⁄࢘ < . ૡ

oxidation state C. Bartel et al., Sci. Adv. 5, eaav0693 (2019) 



SISSO: Examples
• Adsorption of molecules on metal surfaces

M. Andersen et al., ACS Catal. 9, 2752 (2019)

Adsorption of C, CH, CO, H, O, OH)

previous state of the art

1%

99%

maximum 
absolute error

1%

median
25%

75%



SISSO: Examples
• Design of topological insulators (materials for spintronics, catalysis, thermoelectricity)

G. Cao et al., arXiv:1808.04733

topological insulators

normal insulators

ࢆ - atomic numbers, ࣑ - electronegativities



for each subgroup calculate objective function:
f = Nsubgroup/Nall × |meansubgroup – meanall|× (1 - variancesubgroup/varianceall)

Data mining: Subgroup discovery

W. Klösgen, Advances in Knowledge Discovery and Data Mining. Palo Alto, CA: AAAI Press; 1996, 249

Subgroups are defined by selectors ࣌ expressed as “AND” combinations of statements like 
“band gap < 2 eV”, “atom radius > 1.4 Å”, etc.
SGD algorithm: find subgroups that maximize quality function

Numerical separators (“band gap < 2 eV”) from k-means clustering (unsupervised learning)
Search for subgroups: Monte Carlo or branch-and-bound algorithm



Data mining: Subgroup discovery

M. Boley et al., Data Min. Knowl. Disc. 31, 1391 (2017); B. Goldsmith et al., New J. Phys. 19, 013031 (2017)



Data mining: Subgroup discovery

M. Boley et al., Data Min. Knowl. Disc. 31, 1391 (2017); B. Goldsmith et al., New J. Phys. 19, 013031 (2017)



Data mining: Subgroup discovery

M. Boley et al., Data Min. Knowl. Disc. 31, 1391 (2017); B. Goldsmith et al., New J. Phys. 19, 013031 (2017)



Subgroup discovery: CO2 activation by adsorption

C-O bond elongation, O-C-O 
bending angle  indicators 
of activation



Oxides:
 stable (structurally and 
compositionally) under increased 
temperatures;
 more resistant for poisoning;
 activation is frequently observed

dry reforming of methane:
CO2 + CH4 = 2H2 + 2CO

Sabatier reaction:
CO2 + 4H2 = CH4 + 2H2O

partial hydrogenation:
CO2 + 3H2 = CH3OH + H2O

Subgroup discovery: CO2 activation by adsorption



Subgroup discovery: CO2 activation by adsorption

C-O bond elongation, O-C-O bending angle  indicators of activation 

Which surface properties lead to desired indicators? 

Use subgroup discovery to find materials that optimize activation indicators
for each subgroup calculate objective function:

f = Nsubgroup/Nall × (meansubgroup – meanall) × (1 - variancesubgroup/varianceall)

Maximize C-O bond length or O-C-O bending 



Subgroup discovery: CO2 activation by adsorption

71 oxide materials
141 surfaces with Miller indexes ≤ 2
270 adsorption sites

A2+B4+O3, A3+B3+O3, A1+B5+O3, AO, BO2, A2O3 (B2O3), A2O, BO



Subgroup discovery: CO2 activation by adsorption

GaAlO3(110)-2

Ga2O3(212)

In2O3(001)
)

GaAlO3(110)-1

Al2O3(010)

CaO(001)

charged gas-
phase CO2

ortho-InAlO3(121)

ScGaO3(110)



Primary features
Atom:
electron affinity         ionization potential                 electronegativity
rl(HOMO), rl-1, rl+1 atomic numbers

Material:
work function          band gap              Cbm surface form. energy

Site-specific features:
electrostatic potential                 Hirshfeld charge              bond-valence of O
coordination number of O          vdW C6-coefficient           polarizability

distances to 1st, 2nd, 3d nearest cations                   local-structure parameters  

1st, 2nd, 3d, 4th moments 
DOS moments: center, width, skewness, kurtosis

energy of maximum
energy of topfeatures of 

O 2p-PDOS



Subgroup discovery: Adsorbed CO2 properties



Subgroup discovery: Analysis of the OCO angle

whole sampling
smaller angles
larger angles
rest subgroup

sites delivering smaller angles (59 
adsorption sites):

(energy of O 2p band maximum > -6.0 eV) AND 
(distance from O-site to first nearest cation > 1.8 Å) AND
(distance from O-site to second nearest cation > 2.1 Å)

Most of the site delivering smaller OCO angles are on ionic (basic) materials



Subgroup discovery: Analysis of the C-O bond length

sites delivering larger l(CO) (33 sites):

(cation charge < 0.5e) AND 
(work function ≥ 5.2 eV) AND 
(distance from O site to second nearest cation  ≥ 2.14 Å)

LaGaO3 – cathode material in high-temperature 
electrochemical CO2 reduction;
KNbO3 – photocatalytic reduction of CO2 into CH4;
NaNbO3 – photocatalyst for CO2 reduction with ~70% 
of CO selectivity;
NaSbO3 – material for CO2 capture and storage (CCS)



Subgroup discovery: Alternative mechanisms of CO2 activation

Longer C-O implies smaller OCO angles, but not too small  no catalyst poisoning 



Subgroup discovery: A different approach

݂ = ୱܰ୳ୠ୰୭୳୮

ୟܰ୪୪

݉݁ܽ݊ୱ୳ୠ୰୭୳୮ − ݉݁ܽ݊ୟ୪୪

ୟ୪୪ݔܽ݉/݊݅݉ − ݉݁ܽ݊ୟ୪୪
1 −

ୱ୳ୠ୰୭୳୮݁ܿ݊ܽ݅ݎܽݒ

ୟ୪୪݁ܿ݊ܽ݅ݎܽݒ

݂ = ୱܰ୳ୠ୰୭୳୮

ୟܰ୪୪

ୱ୳ୠ୰୭୳୮ݔܽ݉/݊݅݉ − ୟୱݐ݁݃ݎܽݐ

ୟ୪୪ݔܽ݉/݊݅݉ − ୟୱݐ݁݃ݎܽݐ
Θ(ܱܱܥ < ܽ) information gain(ܧୟୢୱ ∈ (−2.5, −0.5))



Subgroup discovery: A different approach

with adsorption energy 
constraint:

smaller charge on 
surface O, delocalized 
electron density, 
binding of O in CO2 with 
surface cations

large Hirshfeld charge 
on surface O, lower 
coordination for smaller 
angles



SISSO and SGD software

SISSO: https://github.com/rouyang2017/SISSO

Subgroup discovery:      http://www.realkd.org/



Decision trees

feature 3 < 0.5 

yes no

feature 2 > -6.0 
feature 1 ≥ 5.2

yes no

feature 2 > 1.8
bad catalyst

yes

good catalyst
no

bad catalyst

yes no

feature 2  < -4

yes

bad catalyst good catalyst
no

bad catalyst

Example: Categorical 
decision tree

root node

internal node
branch

leaf (terminal) node
Split criterion: ∑ ) − ( → ܖܑܕ

proportion of same-category inputs



Decision tree regression

Choose splits that 
minimize variance of 
target property within 
each subgroup

feature 3 < 0.5 

yes no

feature 2 > -6.0 
feature 1 ≥ 5.2

yes no

feature 2 > 1.8
bad catalyst

yes

P>1.28

no

yes no

feature 2  < -4

yes no
1.28 ≥ P >1.26 1.26 ≥ P >1.24 1.23 ≥ P > 1.22

1.24 ≥ P > 1.23

Split criterion: ∑ ܡܜܚ܍ܘܗܚܘ ܜ܍ܚ܉ܜ − ܡܜܚ܍ܘܗܚܘ ܜ܍ܚ܉ܜ  → ܖܑܕ within each subgroup 



Decision tree properties

• Simple to understand and interpret

• Global (important difference to subgroup discovery, which finds locally unique groups)

• Easy to overfit (can use LASSO-type penalty to solve this problem)

• Small change in data can lead to large change in the tree

• Relatively inaccurate 



Random forest®

1) Perform tree regression or classification on several randomly selected subsets of data

2) In each tree, at each split choose randomly a fixed number of features, for which the 
best split is determined

3) Average predictions from the obtained trees

Properties:

• More accurate than a single tree (“each tree keeps other trees from making mistakes)

• Interpretability of the model is lost

• Can be use to select primary features for other approaches such as SISSO



Random forest®

Interesting application: Identify most important surface structural features that determine 
surface stability 


