Neural Network Potentials to explore the Crystal Structure Landscape

Stefano de Gironcoli Scuola Internazionale Superiore di Studi Avanzati Trieste-Italy

Credits:

Emine Kucukbenli, Boston U (MA, USA)

Ruggero Lot, SISSA Trieste (I)

Franco Pellegrini, SISSA Trieste (I)

Yusuf Shaidu, Berkeley (CA, USA)

PANNA

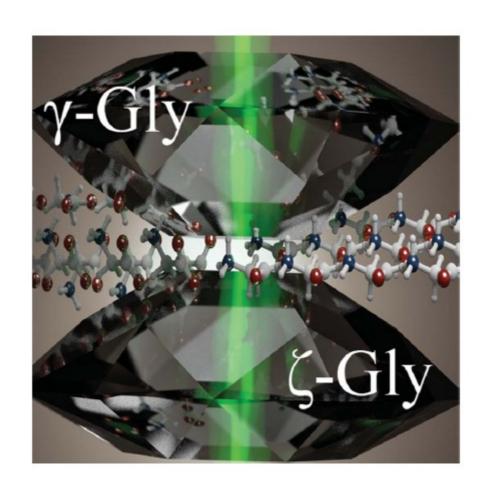
Properties from Artificial Neural Network Architectures

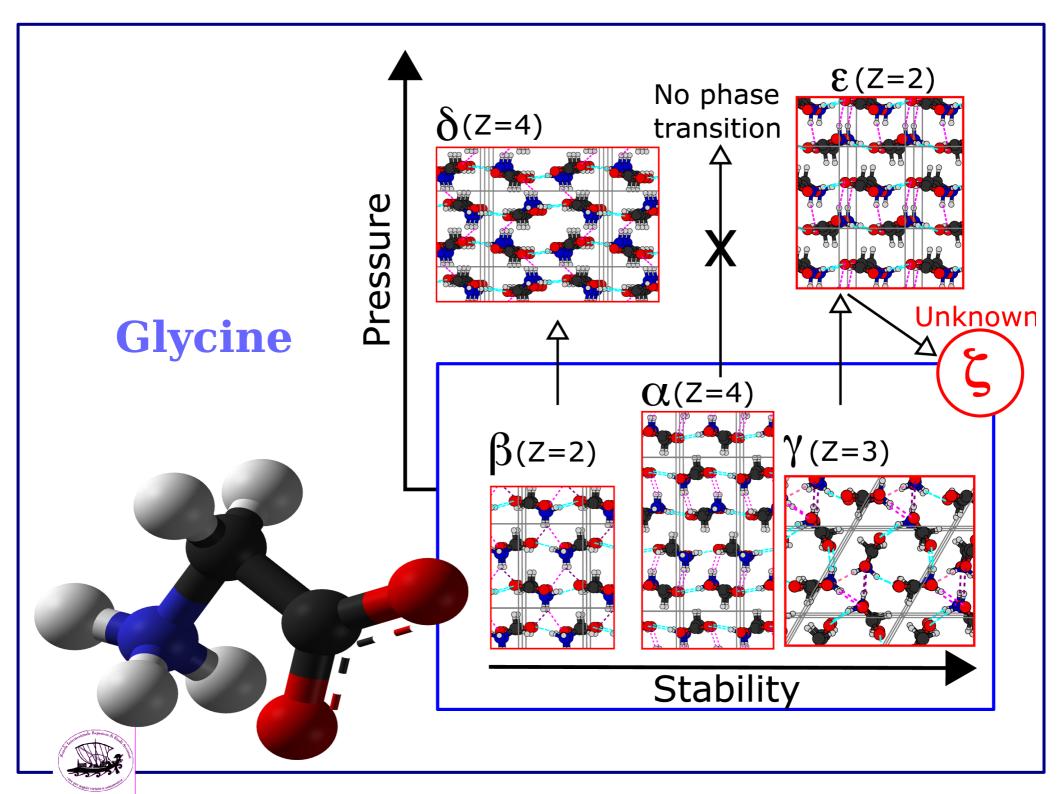
https://gitlab.com/pannadevs/panna

CSP is a formidable task

- CSP problem: Name a chemical or stoichiometric formula; find the (local) minima of the free energy landscape under given thermodynamic conditions (often at certain T,P)
- "What is the most stable structure of glycine at ambient conditions?" "What is the carbon structure that is stable at very high pressures"
- Challenges:
 - A very vast space of possibilities.
 - Free energy landscape is very expensive to obtain accurately

ζ-Glycine: Insight into the mechanism of a polymorphic phase transition





How to tackle CSP?

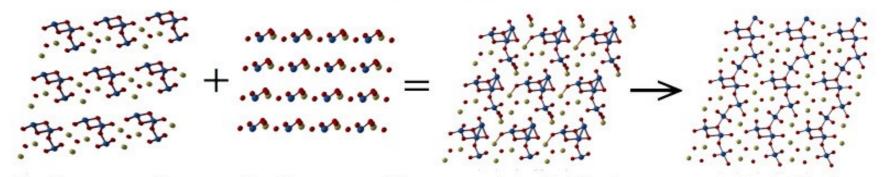
Explore: Use smart algorithms to explore as much of the landscape as possible

Molecular dynamics / Monte Carlo walkers

- Simulated annealing
- Metadynamics
- Basin hopping
- Minima hopping
- Genetic algorithm

Genetic algorithm

(a) heredity



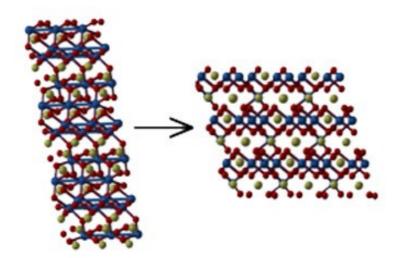
slice from parent #1

slice from parent #2

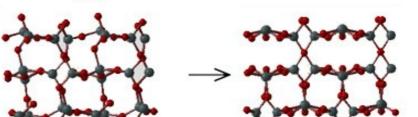
non-optimized offspring

optimized offspring

(b) lattice mutation

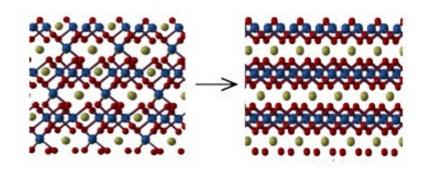


USPEX operations

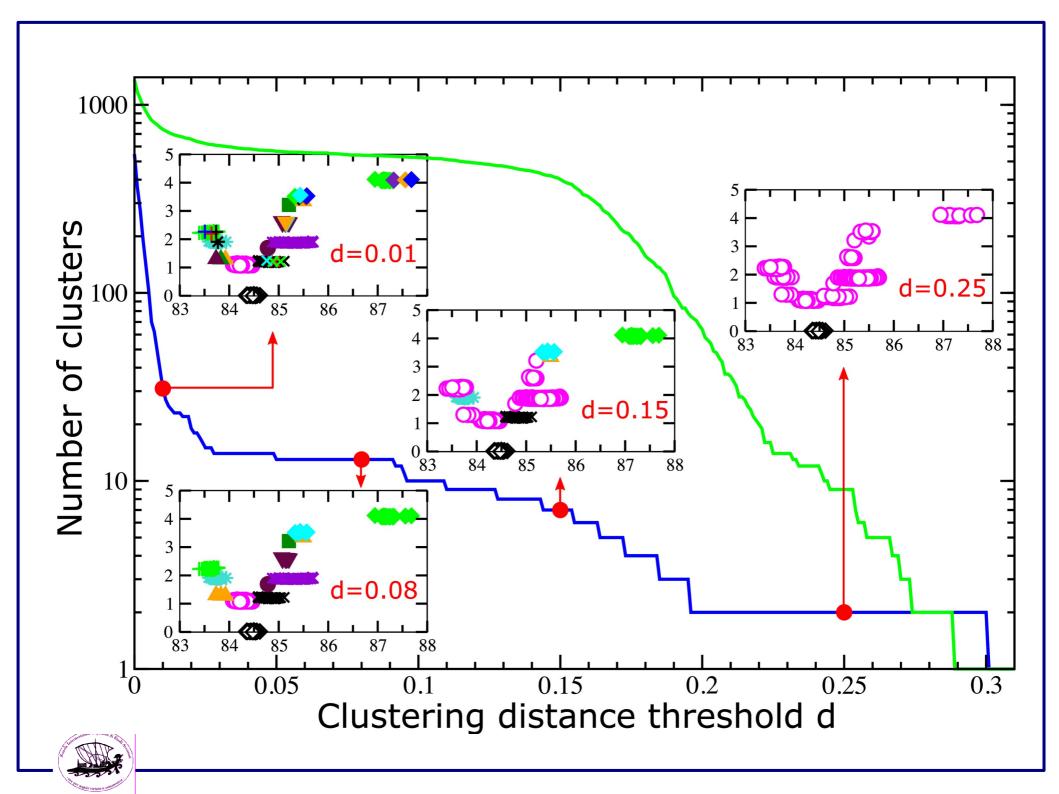


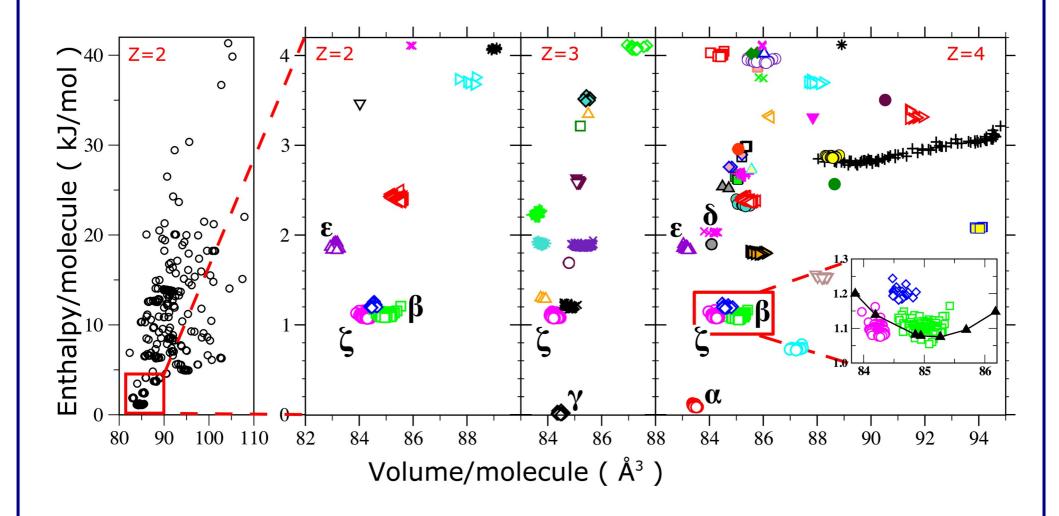
(c) softmode mutation

(d) permutation



+ vdWDF + clustering





ζ-phase 4,000 6,000 14.000 Time of Flight/microsec Counts 18,000

Figure 2 (a) Rietveld fit of the neutron powder diffraction pattern of ζ -glycine at 100 K (blue = observed, red = calculated). In addition to the peaks ζ -glycine, the pattern also shows the presence of residual ε - and a trace of γ -glycine. Other peaks arise from the sample environment, namely the pressure marker and the Al₂O₃ and ZrO₂ components of the anvils of the pressure cell. (b) Rietveld fit of the neutron powder diffraction patte β -glycine (contaminated with ζ - and a trace of γ -glycine) at 290 K. A 1 Å d spacing approximates to 4837 μ s in time-of-flight.

12,000

Time of Flight /Microsec

14,000

16,000

10,000

E Kucukbenli, CH Pham, SdG, C Bull, G Flowitt-Hill, HY Playford, M Tucker, S Parsons Int Union Crist I

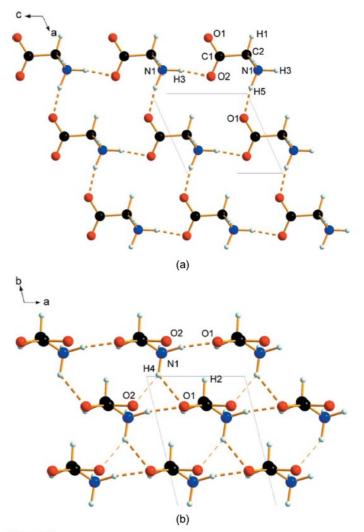


Figure 3 Intermolecular interactions in ζ -glycine. (a) Layers formed in the ac plane, viewed along **b**. (b) Stacking of the layers, viewed along **c**.

Exploring the phase space for larger molecules (ex. CLR) requires fast and accurate energetics

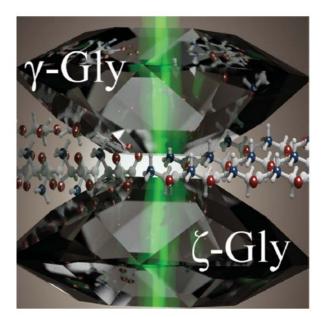
4.000

6.000

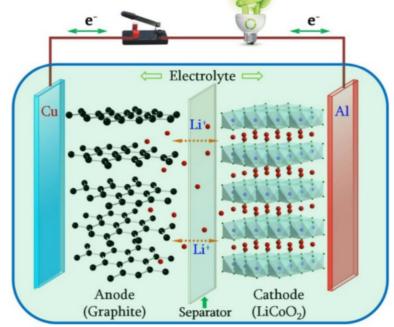
8.000

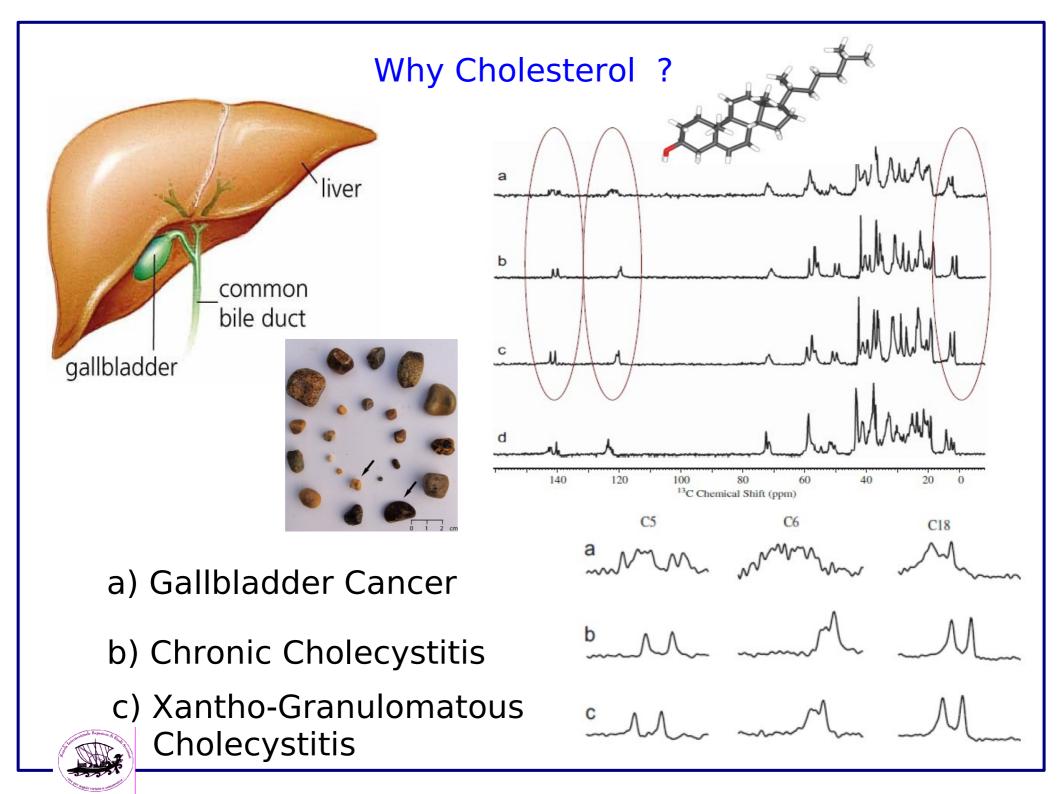
Complete 13C Chemical Shift Assignment for Cholesterol Crystal

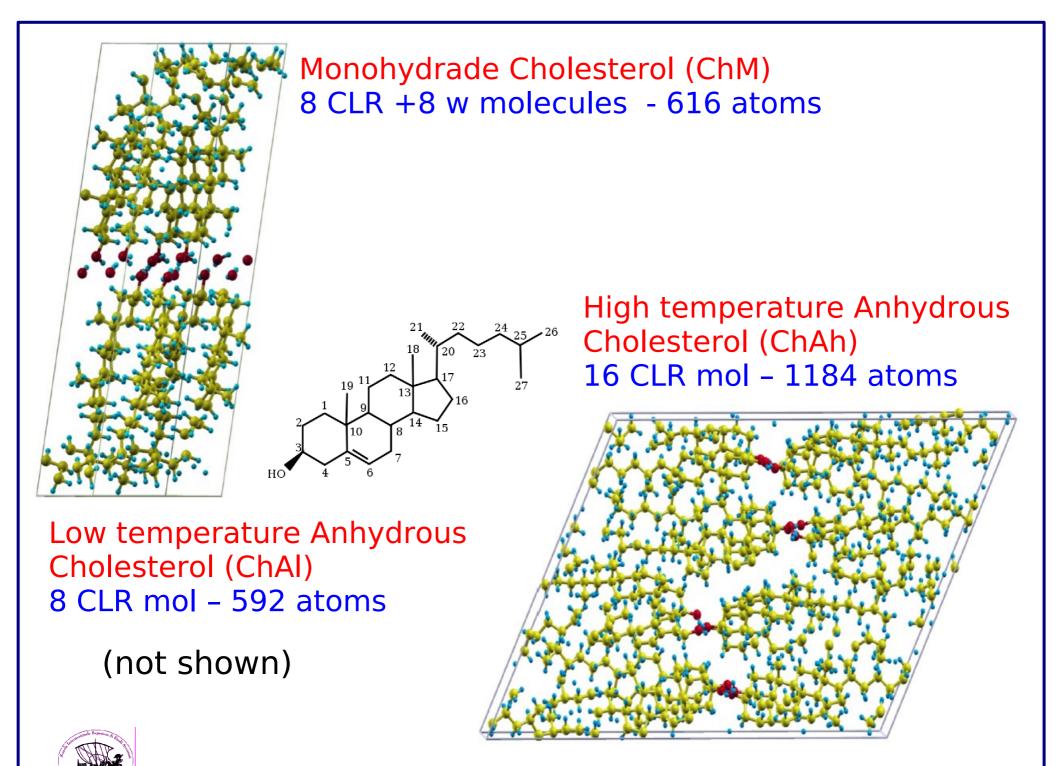
<u>ζ-Glycine: Insight into the mechanism</u> of a polymorphic phase transition



Lithium-ion Batteries

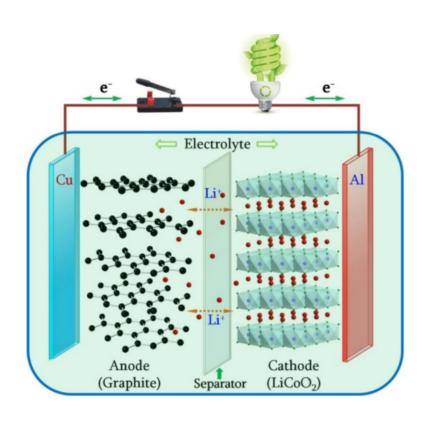






Lithium Interaction with Graphene-like Materials

Lithium ion batteries



Cathode: Source of lithium

Electrolyte: Ionic conductivity

Anode: Lithium holder

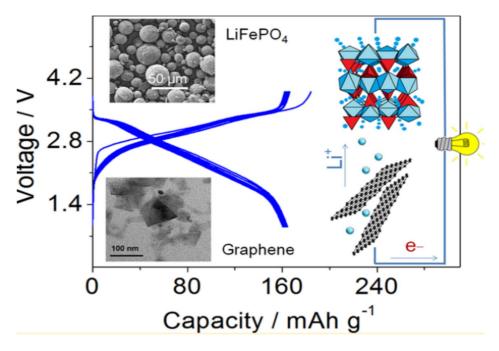
Current collectors

Capacity: The amount of Li absorbed by anode

Stoichiometry of Li adsorbed graphite is LiC₆

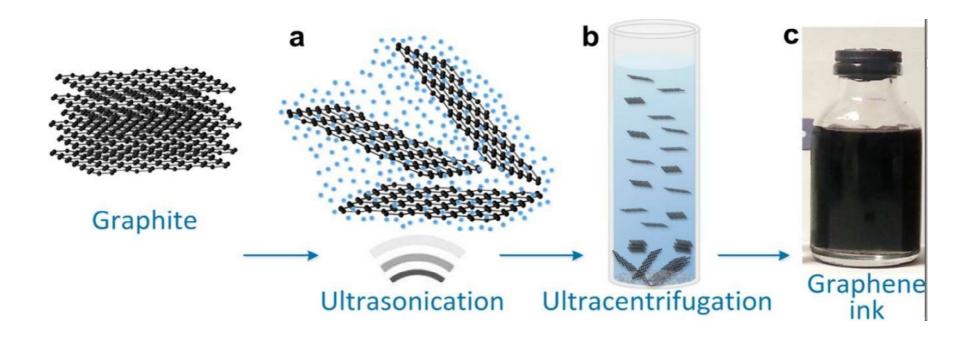
Alternative anode materials:

Graphene due to its large surface to mass ratio and good electrical conductivity.



- graphene nanoflakes as alternative anode
- Flakes ~30-100 nm lateral dimension
- Very high Li uptake: LiC₂
 Hassoun et al. Nano Lett. 2014, 14, 4901-4906

Materials Today 19(2):109-123, 2016



Traditionally model potentials construction requires a lot of physical intuition and are strongly dependent on the available experimental information.

Not transferable to experimentally unexplored regions.

Limited accuracy due to rigid functional form.

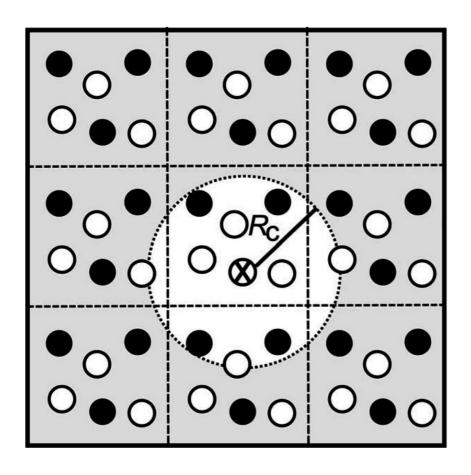
DFT is a viable option to gather accurate information but requires a systematic approach to build a potential that can incorporate its features.

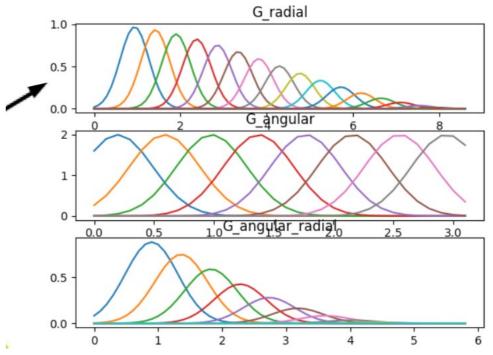
Replace the expensive DFT total energy calculations (or other accurate methods) with an interatomic potentials built to reproduce DFT data in a variety of environments

$$E(c) = \sum_{\alpha} \sum_{i \in \alpha} \varepsilon_{\alpha}(\mathbf{d}_i) + \text{long range contrib}$$

- Kernel Ridge Regression (and Gaussian Processes)
- Neural Networks
- local environment descriptors

- Modified Behler-Parrinello descriptor





Symmetry Functions

The radial part

$$G^R = \sum_{j \neq i} e^{-\eta (R_{ij} - R_s)^2} f_c(R_{ij})$$

The angular part

$$G^{A} = 2^{1-\xi} \sum_{jk \neq i} (1 + \cos(\theta_{ijk} - \theta_{s}))^{\xi} e^{-\eta(\frac{R_{ij} + R_{ik}}{2} - R_{s})^{2}} f_{c}(R_{ij}) f_{c}(R_{ik})$$

$$f_c(R) = \frac{1}{2}(1 + \cos(\frac{\pi R}{R_c}))$$

J. Behler and M. Parrinello, Phys. Rev. Lett. **98**, 146401 (2007)

J.S.Smith, O.Isayev and A.E.Roitberg, Chem. Sci., 2017, 8, 3192-3203

Representation

$$G^R_{m,s;i} = \sum_{i
eq j}^{ ext{All atoms kind s}} e^{-\eta(r_{ij}-R_m)^2} f_c(r_{ij})$$

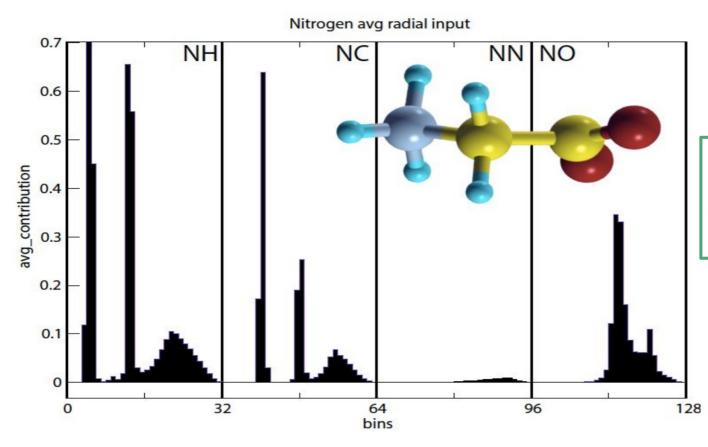
$$f_c(r_{ij}) = \begin{cases} 0.5 \left[\cos \left(\frac{\pi r_{ij}}{R_c} \right) + 1 \right] & \text{if } r_{ij} \le R_c \\ 0 & \text{if } r_{ij} \ge R_c \end{cases}$$

R0=0.5A , Rc= 4.6A 32 bins per pair: 32x4=128 parameters

J. Behler and M. Parrinello, PRL, 98.14 (2007).

Smith et al, Chem Sci 8 3192 (2017) DOI: 10.1039/c6sc05720a

Average G-radial for N in GLY



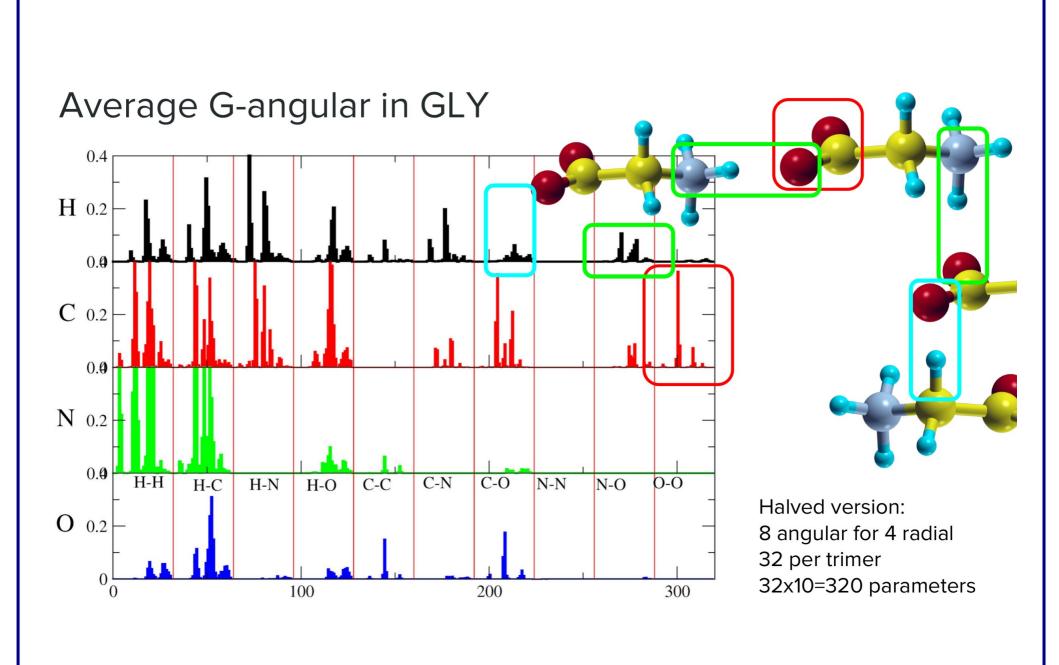
R0=0.5A , Rc= 4.6A 32 bins per pair: 32x4=128 parameters

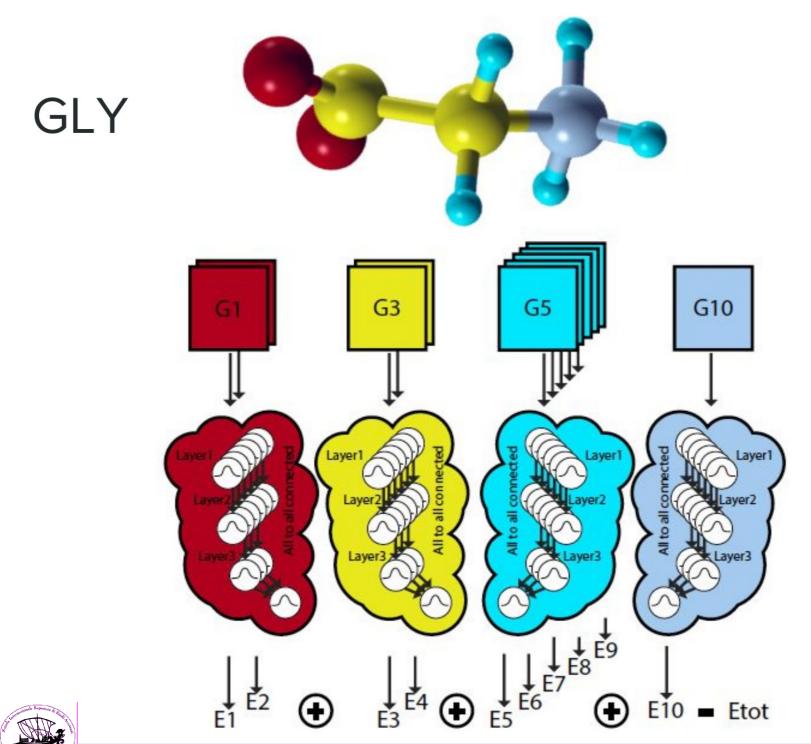
Representation

$$G_{n,m,s;i}^{A} = 2^{1-\xi} \sum_{j,k \neq i}^{\text{All atom of kind s}} (1 + \lambda cos(\Theta_{ijk} - \Theta_n))^{\xi}$$

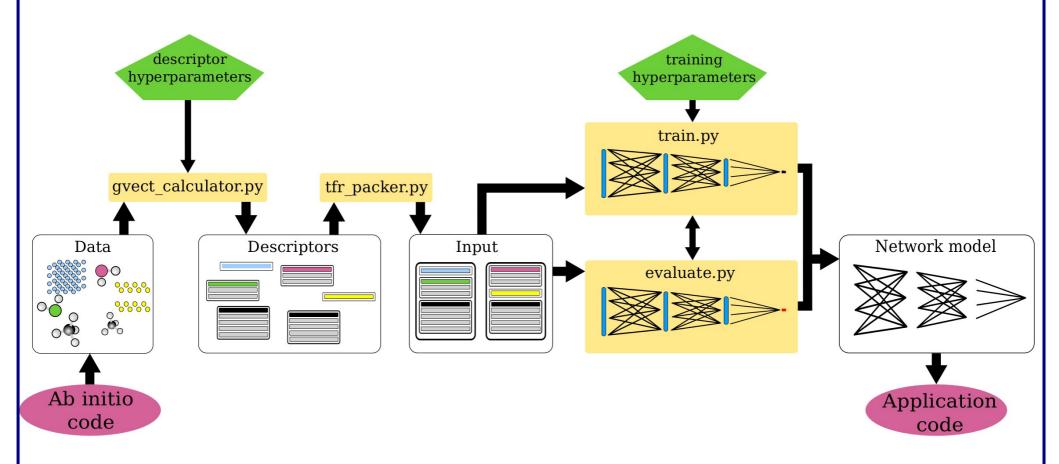
$$e^{-\eta \left(\frac{r_{ij} + r_{ik}}{2} - R_m\right)^2} f_c(r_{ii}) f_c(r_{ik})$$

Smith et al, Chem Sci (2016) DOI: 10.1039/c6sc05720a R0=0.5A , Rc= 3.1A 8 angular bin for each 8 radial bin 64 bins per trimer: 64x10=640 parameters





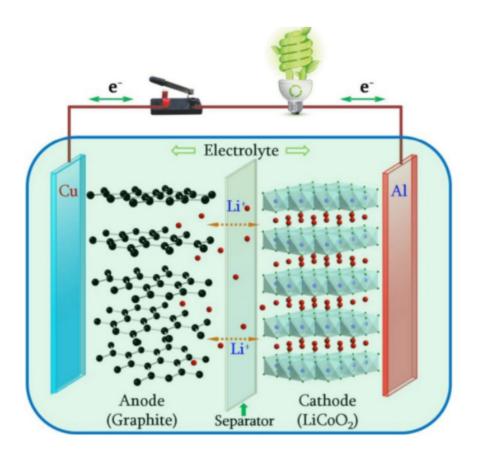
PANNA workflow

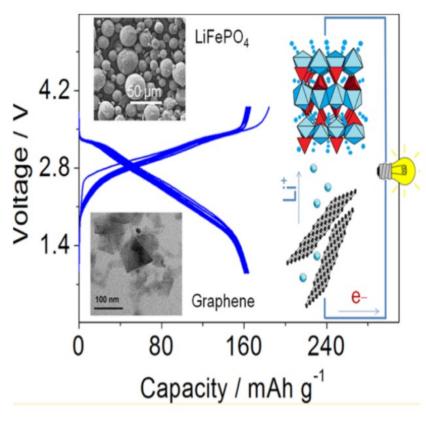


R Lot, F Pellegrini, Y Shaidu, E Kucukbenli, arXiv:1907.03055

https://gitlab.com/pannadevs/panna

Lithium ion batteries



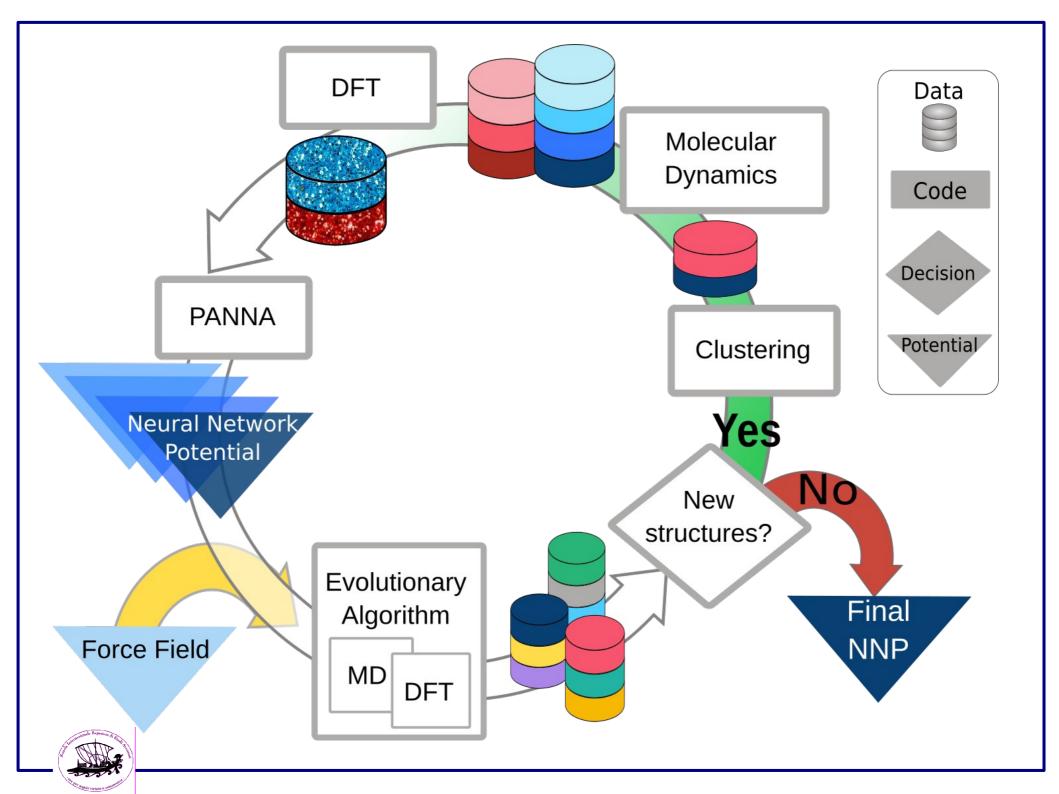


graphite: LiC₆

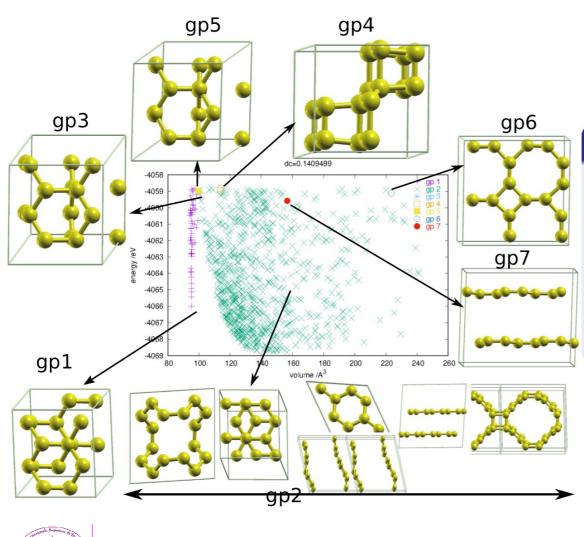
Today 19(2):109-123, 2016

graphene: LiC₂

Hassoun et al. Nano Lett. 2014, 14, 4901-4906



Carbon Systems



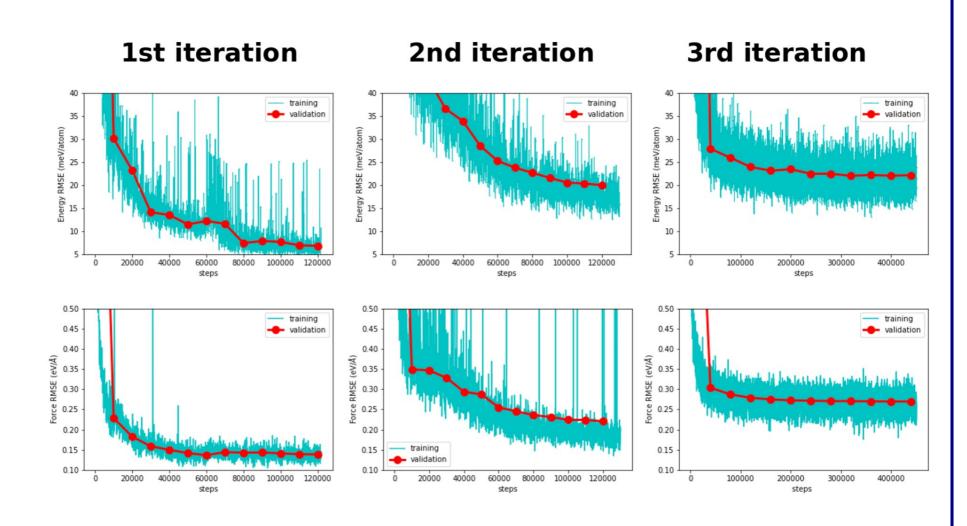
$$D = \frac{1}{2} \left(1 - \frac{\mathbf{F_1} * \mathbf{F_2}}{|\mathbf{F_1}||\mathbf{F_2}|} \right)$$

Training Parameters

- Architectures: 144:64:32:1
- Activation function: gaussian:gaussian:linear
- minimized quantity:

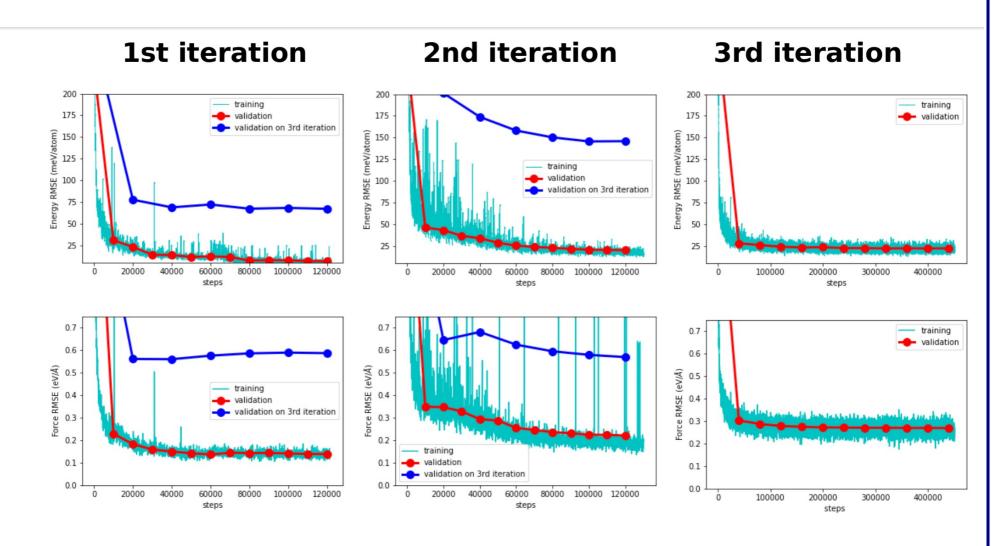
$$Loss = E_{Loss} + \beta F_{Loss}$$

Carbon Systems: training and validation



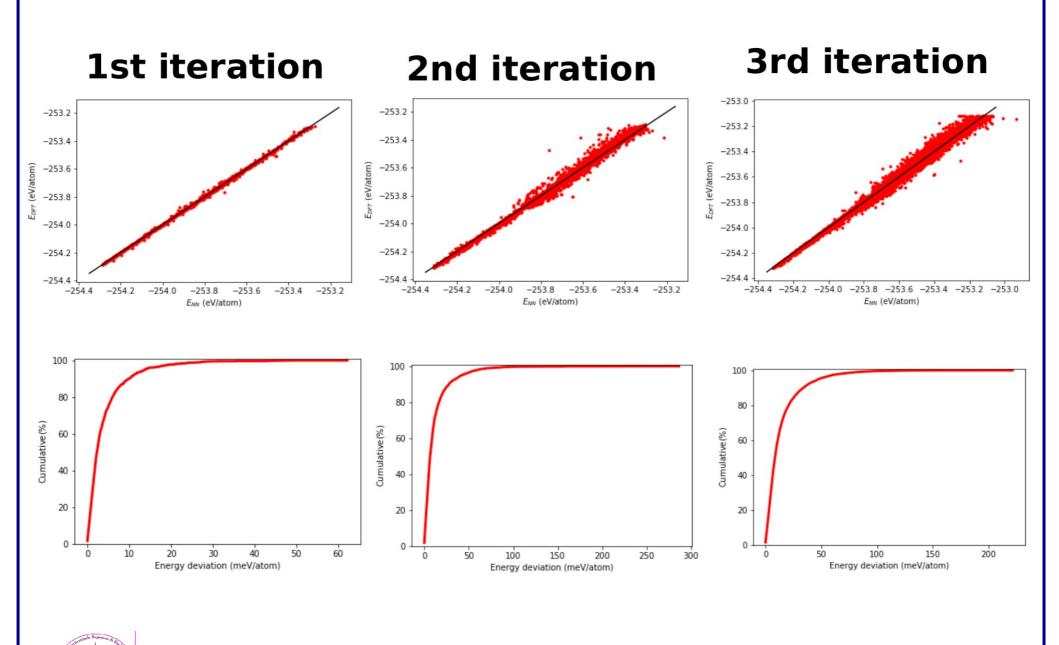
• 20 % of the data set is set aside for validation

Carbon Systems: training and validation

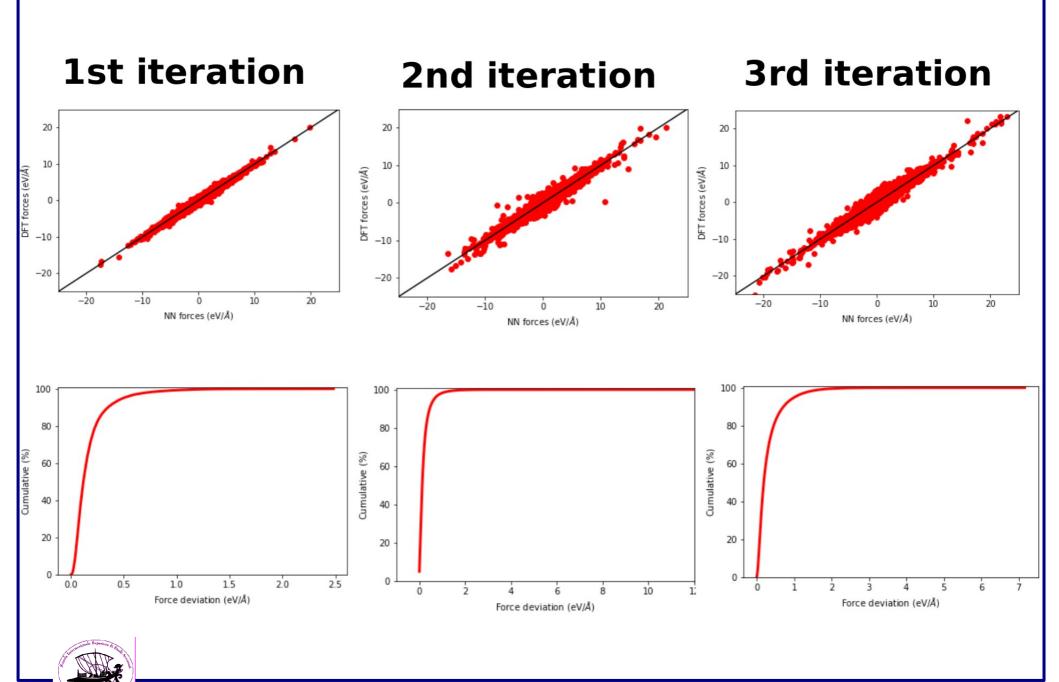


20 % of the data set is set aside for validation

Error distribution: energies



Error distribution: forces



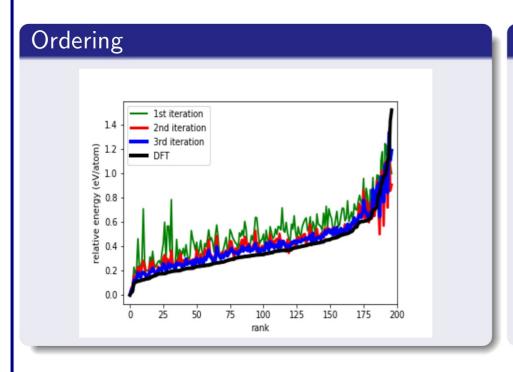
Effect of diversity on training and validation RMSE

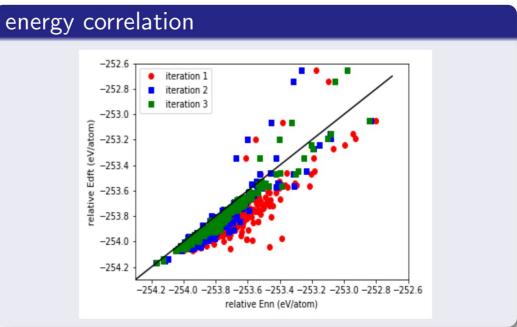
Validate Train	T error	All D	D < 0.15	D < 0.10	D < 0.05	$D_{12} < 0.05$
All D	22.070	22.131	20.938	15.161	7.659	7.302
D < 0.15	18.066	80.424	18.422	13.342	5.949	17.567
D < 0.10	8.563	162.327	52.178	9.369	4.391	76.260
D < 0.05	2.633	879.207	452.598	89.022	2.585	650.075
$D_{12} < 0.05$	2.574	174.257	88.311	51.972	2.739	2.627

Validate Train	All D	D < 0.15	D < 0.10	D < 0.05	$D_{12} < 0.05$
All D	0.2696	0.2717	0.1974	0.0829	0.0785
D < 0.15	0.5969	0.2523	0.1789	0.0766	0.1873
D < 0.15	0.9571	0.4410	0.1472	0.0617	0.3112
D < 0.15	3.2641	2.0028	0.7243	0.0529	0.8699
$D_{12} < 0.05$	0.9641	0.8934	0.5440	0.0529	0.0504

Energy ordering of test structures

• 197 different sp³ C structures³

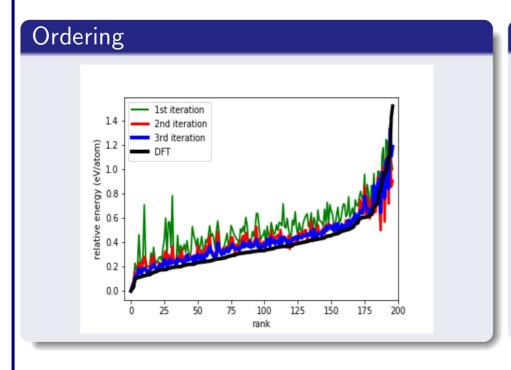


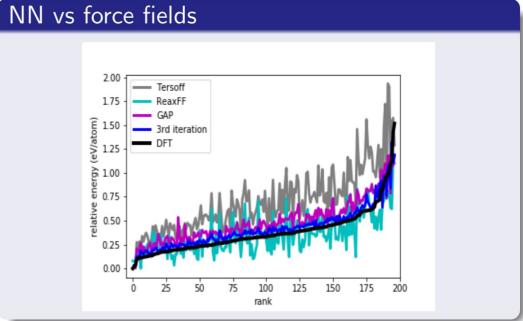


³V.L. Deringer, G. Csanyi and D.M.Proserpio, Chem. Phys. Chem. 2017, 18, 873–877

Energy ordering of test structures

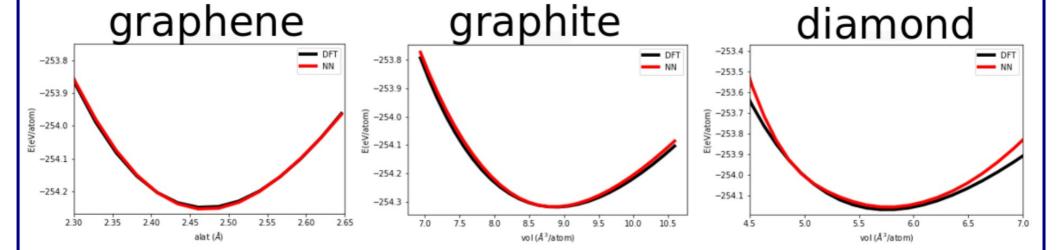
• 197 different sp³ C structures⁴

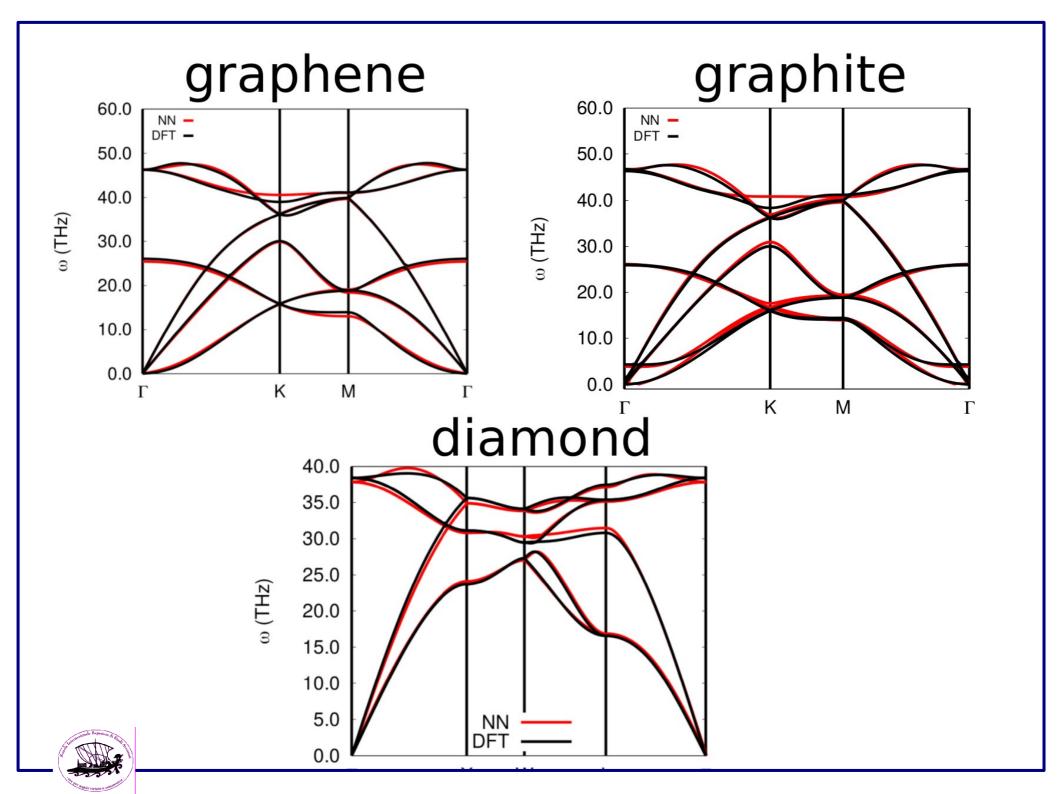




⁴V.L. Deringer, G. Csanyi and D.M.Proserpio, Chem. Phys. Chem. 2017, 18, 873–877

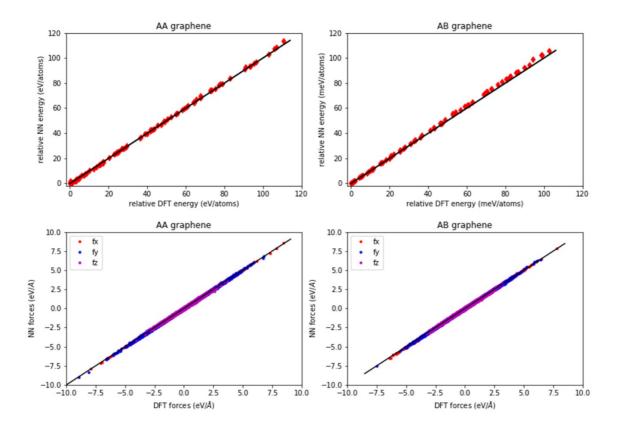
Equation of State





Bilayer Graphene

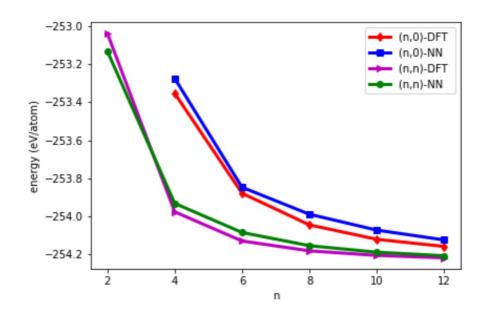
- configurations generated potential via NVT MD in which the system was heated up from 300 K to 1000K using Nose-Hoover thermostat chain over a period of 1ns.
- Excellent agreement with DFT



3.

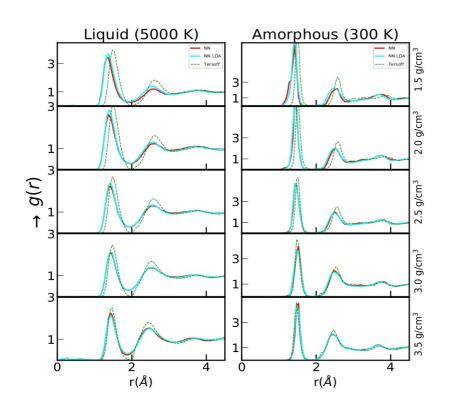
Carbon Nanotubes

- Zigzag nanotube designated by (n,0) and Armchair nanotube designated by (n,n). n specifies the diameter of the tube as $d(n,m)=\frac{a}{\pi}\sqrt{n^2+nm+m^2}$, a is the lattice parameter
- Trends excellently captured
- Good agreement with DFT

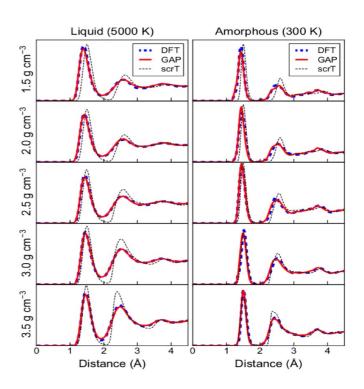


Amorphous Carbon: radial distribution function

a) Our result

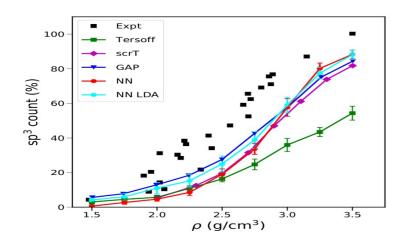


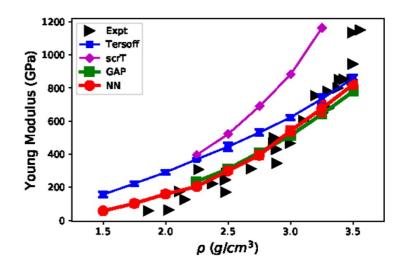
b) GAP



V.L. Deringer and G.Csányi, PRB 95, 094203, (2017)

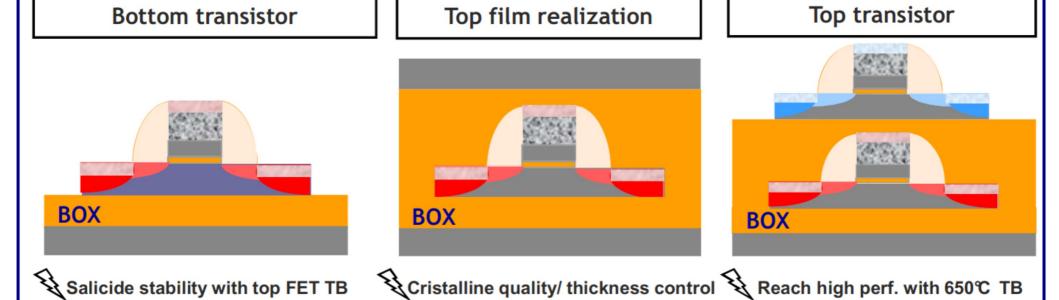
Amorphous Carbon: sp3 fraction and Young Modulus



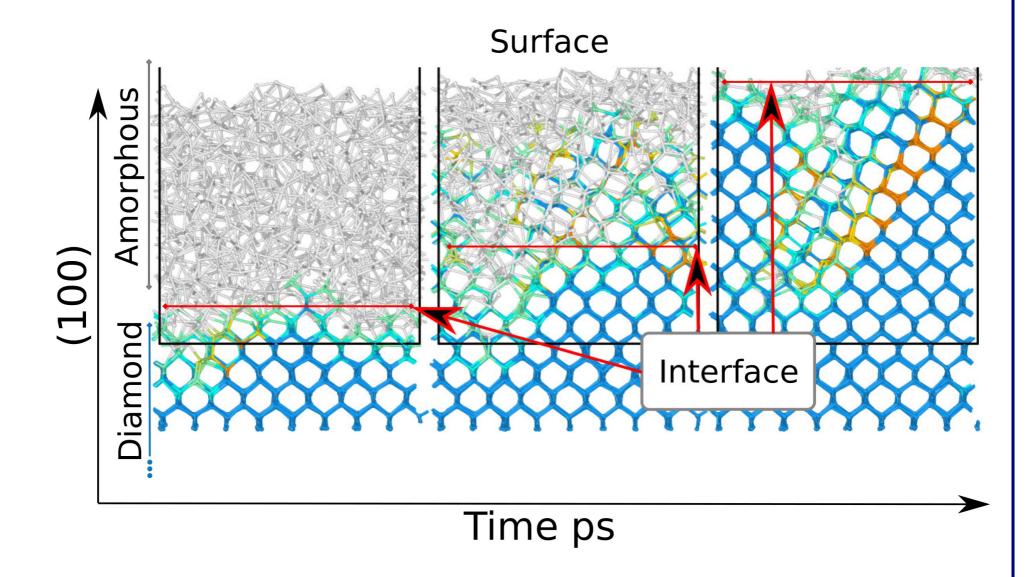


- Fallon et al. PRB 48, 4777 (1993).
- J. Schwan et al. Journal of Applied Physics 79, 1416 (1996)
- V.L. Deringer and G.Csányi, PRB 95, 094203, (2017)
- B.Schultrich et al. Diamond and Related Materials 5 (1996) 914-918
- B.Schultrich et al. Surface and Coatings Technology 98 (1998) 1097-1101

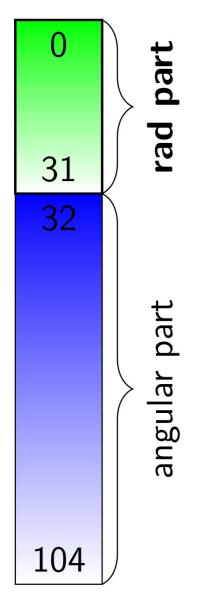
Solid Phase Epitaxy for Silicon



Problem statement

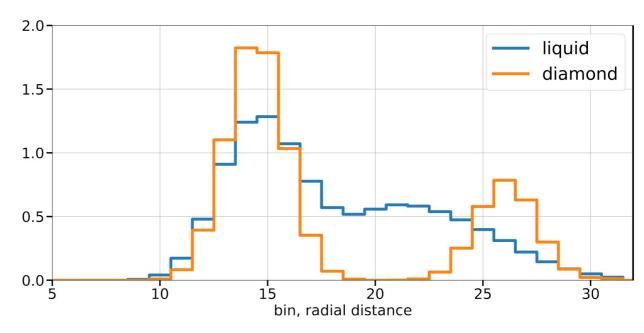


The input: $G_i(\{\mathbf{x}_j\}|_{d(\mathbf{x}_i,\mathbf{x}_j)< r_{cut}})$



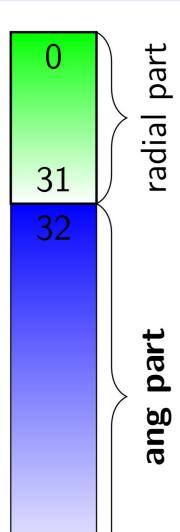
The radial part

$$G_{m,s;i}^R = \sum_{i
eq j}^{ ext{All atoms kind s}} e^{-\eta(r_{ij}-R_m)^2} f_c(r_{ij})$$



with thermal vibrations Behler and Parrinello 2007

The input: Descriptor



The angular part

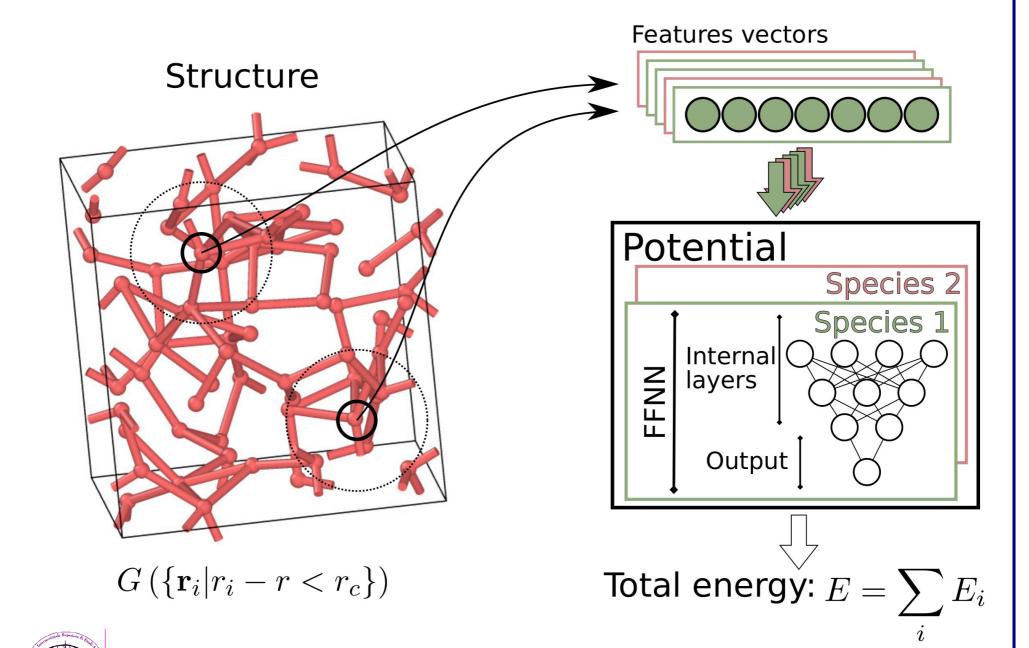
$$G_{n,m,s;i}^{A} = 2^{1-\xi} \sum_{j,k
eq i}^{ ext{All atom of kind s}} (1 + cos(\Theta_{ijk} - \Theta_n))^{\xi}$$
 $e^{-\eta \left(rac{r_{ij} + r_{ik}}{2} - R_m
ight)^2} f_c(r_{ij}) f_c(r_{ik})$

Supring di Stage

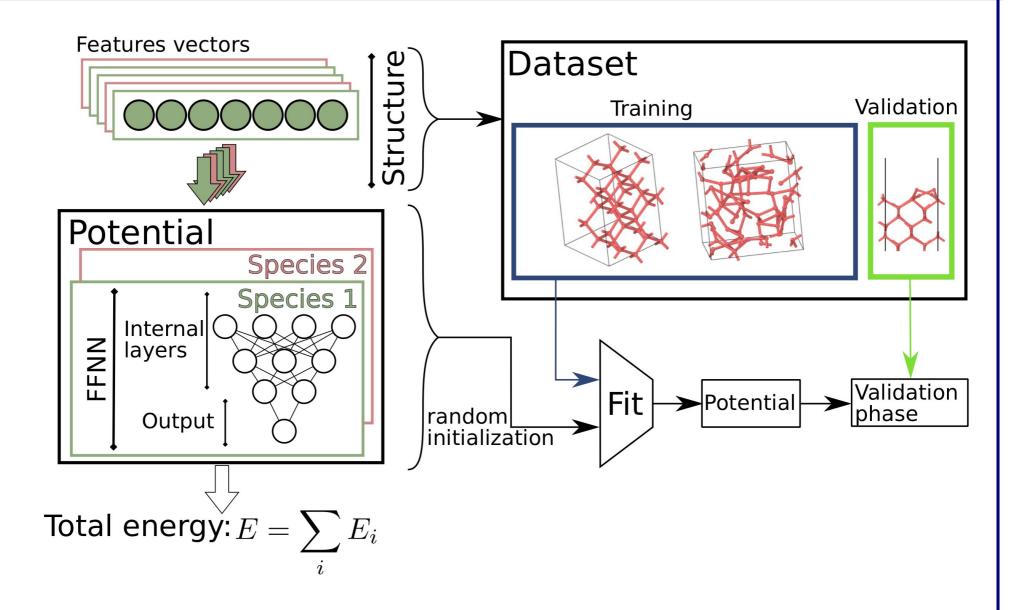
104

Lot et al. 2020; Smith, Isayev, and Roitberg 2017

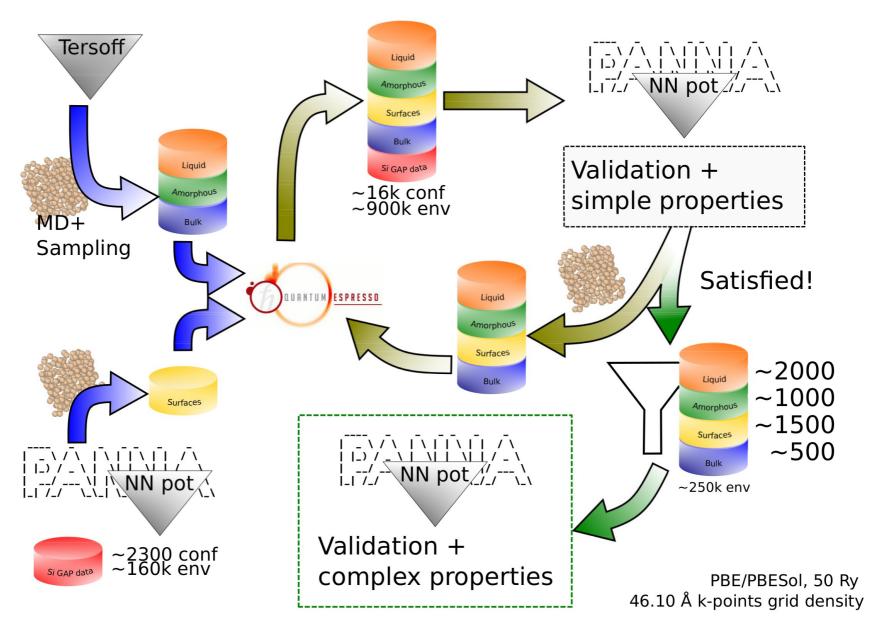
From a FFNN to a potential



The fitting phase

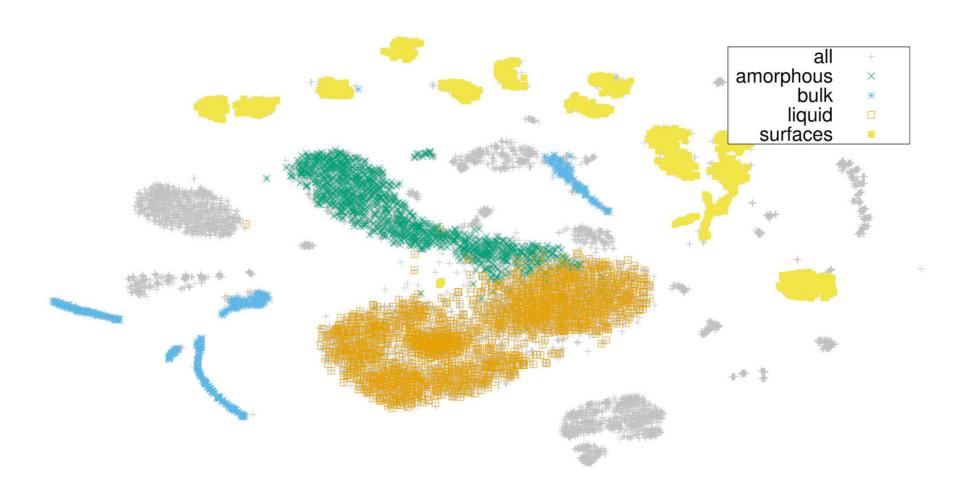


Work workflow



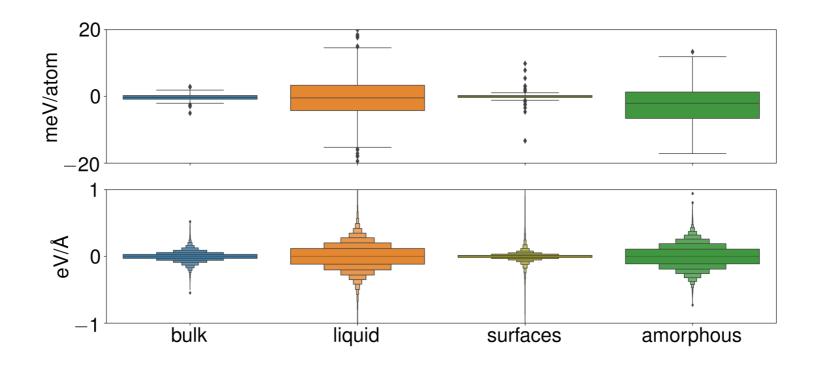
Shaidu et al. 2021; Artrith and Urban 2016; Bartók et al. 2018

Dataset and validation

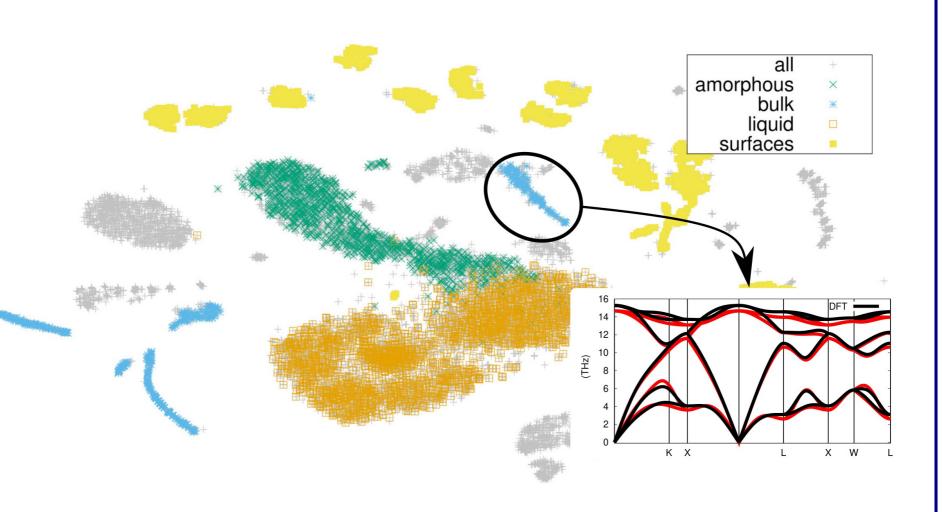


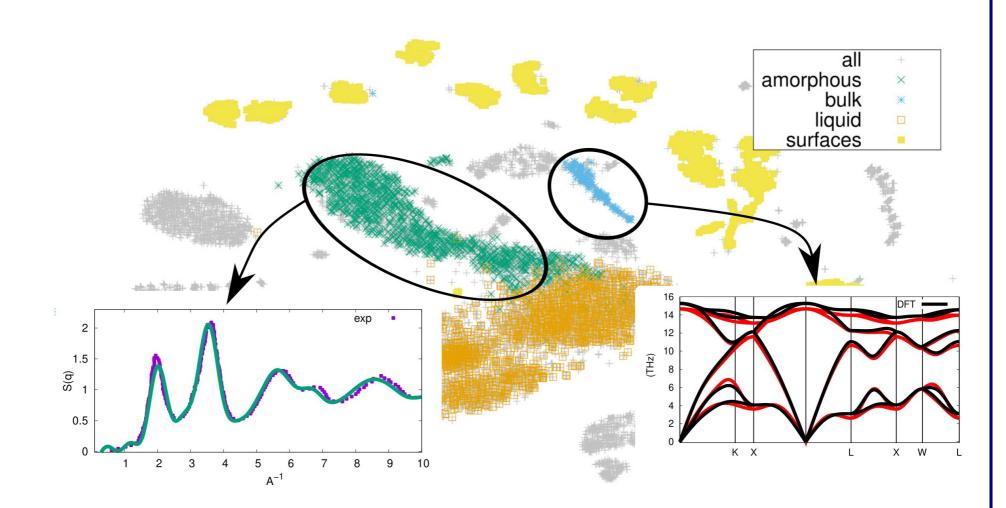
t-sne, \approx 5000 points for \approx 250k environments

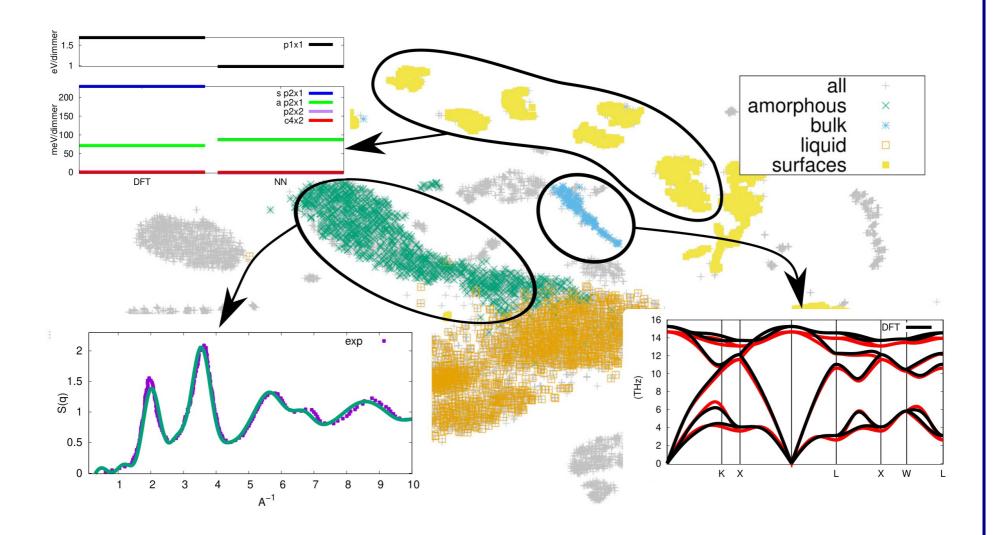
Validation on the dataset

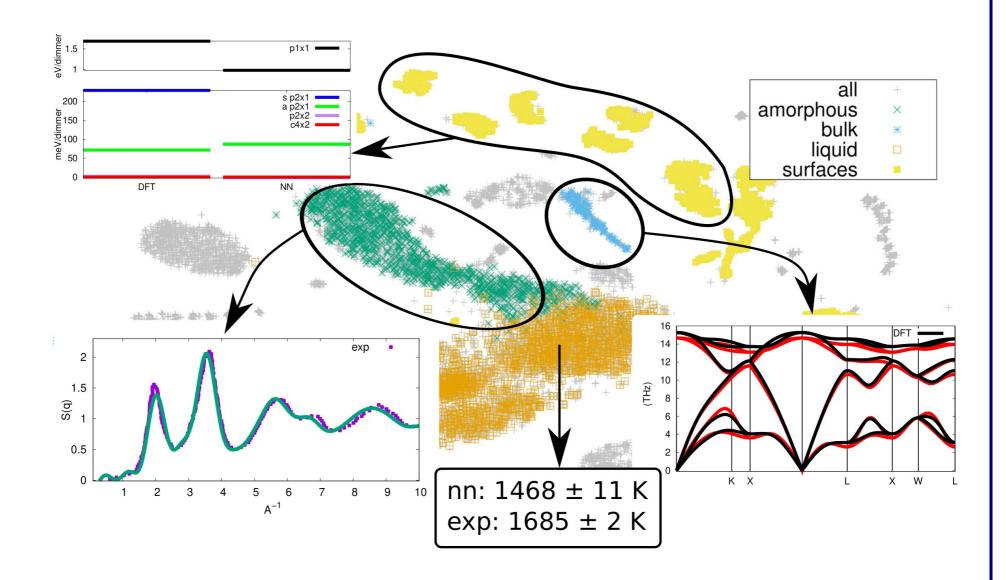


	bulk	liquid	surfaces	amorphous
Energy [meV/atom]	0.9	7.5	3.4	5.8
Forces [meV/Å]	66	196	103	170



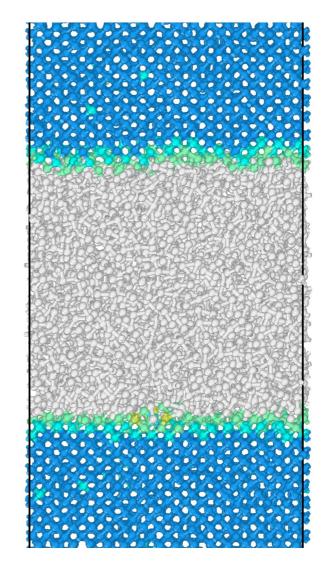




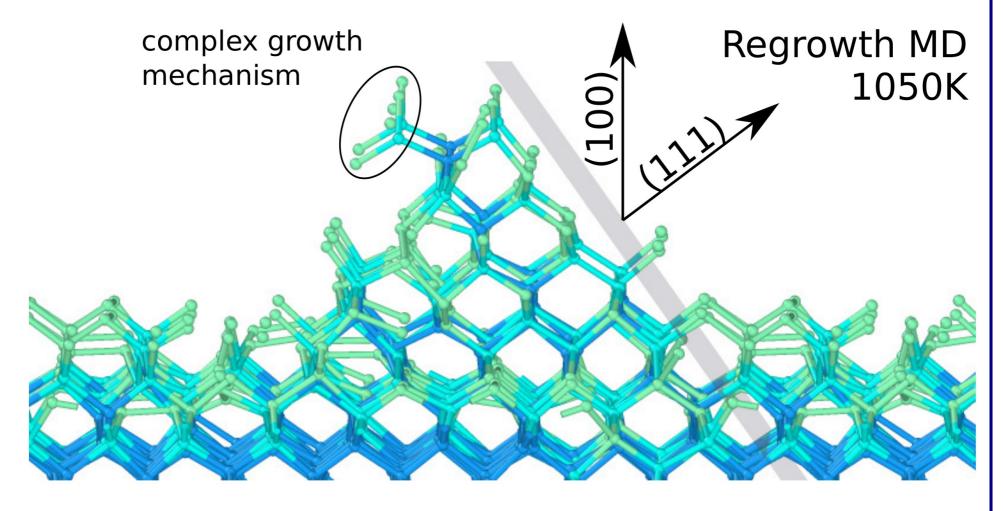


Melting temperature

NN pbe	1468 ± 11 K		
DFT pbe	1540 ± 50 K		
NN PBESol	$1194\pm28 extsf{K}$		
GAP PBESol	1213 ± 21 K		
Experiments	$1685\pm2 extsf{K}$		

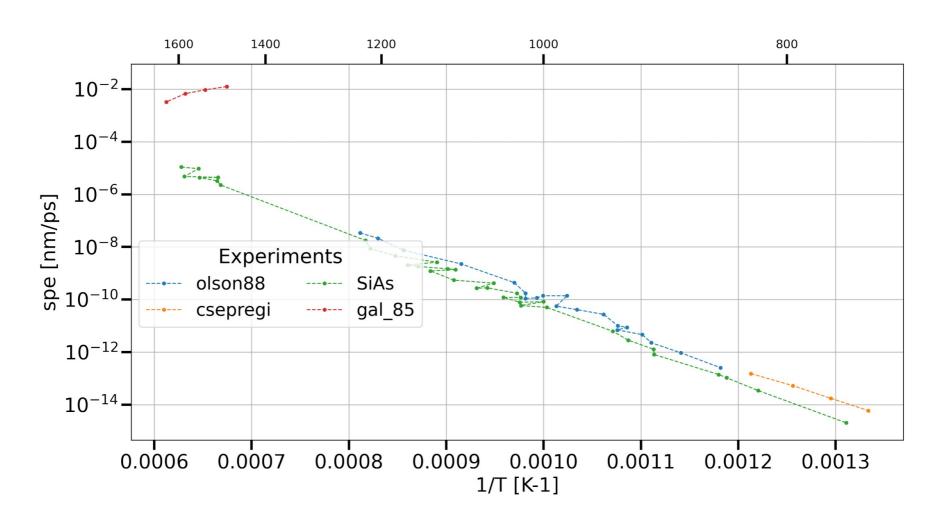


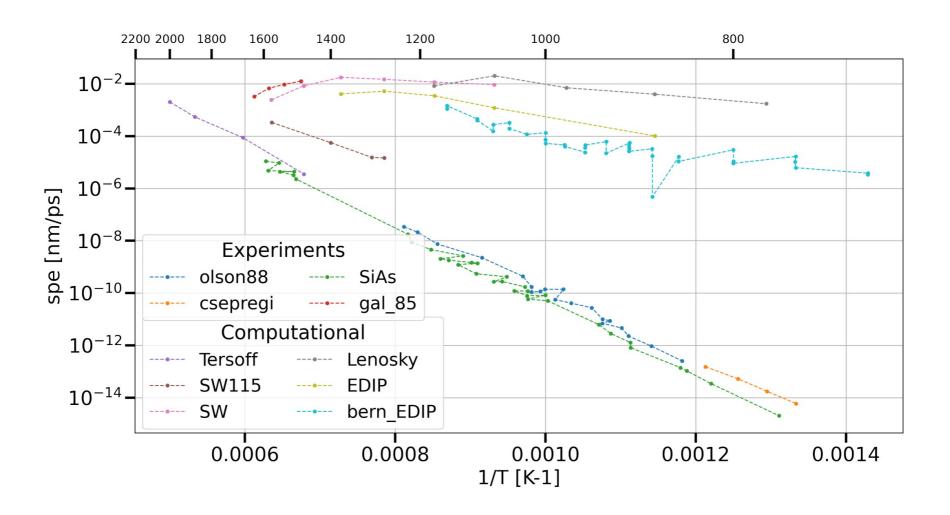
Yoo, Xantheas, and Zeng 2009; Jinnouchi, Karsai, and Kresse 2019

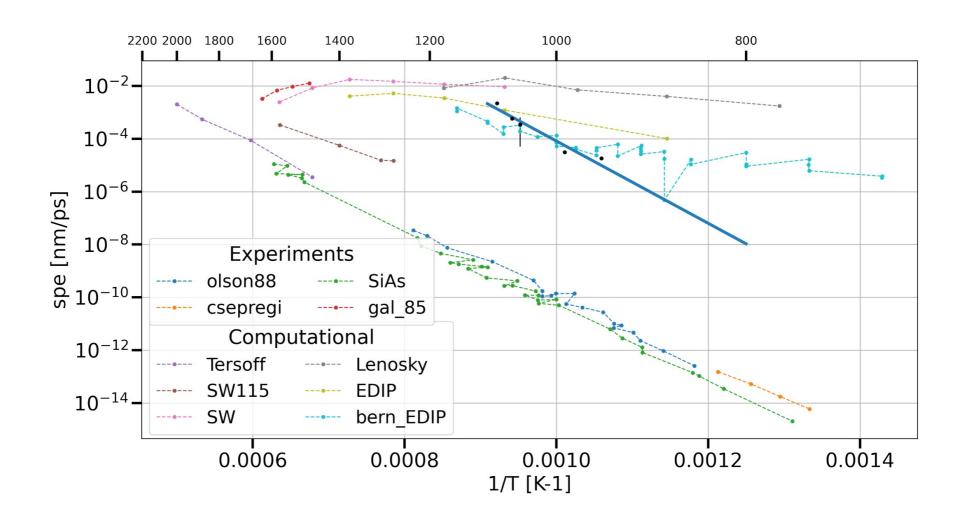


Thermally activated process:

$$v = v_0 exp(-\frac{\Delta E}{k_b T})$$







panna: 3.15 eV, experiments¹: 2.73 eV

Olson and Roth 1988.

Conclusion and outlook

- NN potentials are a valid way to model physical phenomena at the atomistic level
- As a byproduct, PBE-sol xc-functional is not suitable to study thermal related phenomena in silicon
- We are obtaining a correct energy barrier for SPE with pure ab-initio data.

- Improve the amorphous quality
- Isolate the main events for SPE
- Develop a better KMC model.

Emine Kucukbenli

Ruggero Lot

Franco Pellegrini

Yusuf Shaidu

Stefano de Gironcoli

